scholarly journals The advanced performance of microbial consortium for simultaneous utilization of glucose and xylose to produce lactic acid directly from dilute sulfuric acid pretreated corn stover

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yaqin Sun ◽  
Xiaoying Li ◽  
Lida Wu ◽  
Yi Li ◽  
Fan Li ◽  
...  

Abstract Background Lignocellulosic feedstocks have attracted much attention as a potential carbon source for lactic acid (LA) production because of their ready availability, sustainability, and renewability. However, there are at least two major technical challenges to producing LA from lignocellulose. Inhibitors derived from lignocellulose pretreatment have a negative impact on the growth of cells producing LA. Furthermore, pentose sugars produced from the pretreatment are difficultly utilized by most LA producers, which is known as the carbon catabolite repression (CCR) effect. This complex feedstock can be utilized by a robust microbial consortium with high bioconversion efficiency. Results In this study, a thermophilic consortium DUT50 producing LA was enriched and employed to improve corn stover (CS) utilization. Enterococcus was the dominant family in the consortium DUT50, accounting for 93.66% of the total abundance, with Lactobacillus, Bacillus, Lactococcus, and Trichococcus accounted for the remaining 2.68%. This consortium could be resistant to inhibitors concentration up to 9.74 g/L (2.88 g/L acetic acid, 2.46 g/L furfural, 2.20 g/L 5-HMF, and 2.20 g/L vanillin derived from pretreatment of CS), and simultaneously metabolizes hexose and pentose without CCR effect. Based on the promising consortium features, an efficient process of simultaneous saccharification and co-fermentation (SSCF) was developed to produce LA from acid pretreated corn stover, in which solid–liquid separation and detoxification were avoided. The key influencing factors were investigated and optimized, including dry biomass and cellulase loading, corn steep liquor powder concentration, and the pre-hydrolysis time. The highest LA titer of 71.04 g/L with a yield of 0.49 g/g-CS was achieved at a dry biomass loading of 20% (w/v), which is the highest LA production from non-detoxified acid pretreated corn stover via the SSCF process without wastewater generation reported to date. The simultaneous metabolism of hexose and pentose revealed collaboration between Enterococcus in the consortium, whereas xylose may be efficiently metabolized by Lactobacillus and Bacillus with low abundance via the pentose phosphate pathway. Conclusions The experimental results demonstrated the potential advantage of symbiosis in microbial consortia used for LA production from lignocellulosic biomass.

2021 ◽  
Author(s):  
Yaqin Sun ◽  
Xiaoying Li ◽  
Lida Wu ◽  
Yi Li ◽  
Fan Li ◽  
...  

Abstract Background: Lignocellulosic feedstocks have attracted much attention as an alternative carbon source for lactic acid (LA) production with the advantages of ready availability, sustainability, and renewability. However, the production of LA from lignocellulose faces at least two major technical obstacles. The inhibitors derived from pretreatment of lignocellulose inhibit the growth of microorganism used in downstream hydrolysis and fermentation processes. In addition, most LA producers cannot to ferment pentose sugars and have carbon catabolite repression (CCR) effect. Microbial consortium with great robustness can use complex feedstocks displaying high bioconversion efficiency and has received great attention nowadays.Results: in this study, a thermophilic LA producing consortium DUT50 was enriched and employed to enhance the utilization of corn stover (CS). Enterococcus was the dominant family, accounting for 93.66% abundance in DUT50, and the abundance of Lactobacillus, Bacillus, Lactococcus and Trichococcus, accounted for 2.68% in total. This consortium was highly resistant to inhibitors up to 10.90 g/L derived from pretreatment of CS, metabolized hexose and pentose simultaneously without CCR effect. Based on consortium promising features, an efficient process of simultaneous saccharification and co-fermentation (SSCF) was developed to produce LA from acid-pretreated corn stover. The economical route avoided the operations of solid–liquid separation and detoxification. The key influential factors, including dry biomass and cellulase loading, corn steep liquor powder concentration, and the pre-hydrolysis time were investigated and optimized. The highest LA titer of 71.04 g/L with a yield of 0.49 g/g-CS was achieved at a dry biomass loading of 20% (w/v). This is the reported highest LA production from non-detoxified acid-pretreated corn stover via the SSCF process without wastewater generation. The interaction mode of Enterococcus was collaboration while the low abundance of Lactobacillus and Bacillus might metabolize xylose efficiently via the pentose phosphate pathway.Conclusions: Our results demonstrated the potential advantage of symbiosis and provided a feasible and economical route to produce LA from lignocellulosic biomass in industrial scale.


2020 ◽  
Vol 91 ◽  
pp. 132-140
Author(s):  
Hao Chen ◽  
Zihang Su ◽  
Yong Wang ◽  
Boxuan Wang ◽  
Zhihao Si ◽  
...  

Author(s):  
Li-Li Jiang ◽  
Feng-Yi Liu ◽  
Wei Yang ◽  
Chang-Li Li ◽  
Bao-Wei Zhu ◽  
...  

2017 ◽  
Vol 98 ◽  
pp. 124-134 ◽  
Author(s):  
Chao Liang ◽  
Sagar Lonkar ◽  
Pratik Darvekar ◽  
Austin Bond ◽  
Agustin N. Zentay ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document