aqueous ammonia
Recently Published Documents


TOTAL DOCUMENTS

991
(FIVE YEARS 123)

H-INDEX

59
(FIVE YEARS 7)

Author(s):  
Prasad Panchabhai ◽  
Neelakandan Kaliaperumal ◽  
Gopalakrishnan Mannathusamy ◽  
Anbuselvan Chinnadurai

The article confers a scalable manufacturing process of Fenspiride HCl. 4-aminomethyl-1-(2-phenylethyl)-piperidin-4-ol is the main building block in Fenspiride HCl synthesis. The reported reagents for 4-aminomethyl-1-(2-phenylethyl)-piperidin-4-ol synthesis are costly, explosive, highly toxic, produce hazardous waste, and also need to be handled with most care. The paper introduces aqueous ammonia as an alternate reagent in Fenspiride HCl and used in 4-aminomethyl-1-(2-phenylethyl)-piperidin-4-ol synthesis. The new green chemistry aspect makes the process environment-friendly and cheaper. It also eliminates toxic, sensitive, and hazardous reagents and makes the process safe on uncomplicated on bulk scale production. The high pure Fenspiride HCl is obtained by following this process and meets the ICH limits with good yield.


2021 ◽  
Vol 55 (6) ◽  
pp. 472-481
Author(s):  
V. A. Grachev ◽  
A. B. Sazonov

2021 ◽  
Vol MA2021-02 (53) ◽  
pp. 1556-1556
Author(s):  
Anthony D. Santamaria ◽  
Mehdi Mortazavi

2021 ◽  
Vol 115 ◽  
pp. 29-36
Author(s):  
Florentyna Akus-Szylberg ◽  
Andrzej Antczak ◽  
Janusz Zawadzki

Effects of soaking aqueous ammonia pretreatment on chemical composition and enzymatic hydrolysis of corn stover. The aim of this research was to investigate the effect of applying two different temperatures of the soaking aqueous ammonia treatment on the chemical composition and enzymatic hydrolysis yield of the corn stover. Native corn stover as well as solid fractions after 20 h of alkali pretreatment performed at 15% ammonia solution and at 50 °C or 90 °C were analysed in terms of cellulose, holocellulose, lignin and extractives content. Both untreated and treated samples were subjected to the enzymatic hydrolysis and hydrolysates were examined with a high performance liquid chromatography (HPLC). Results indicated a significant development of enzymatic digestibility of the SAA treated biomass. Furthermore, a 38.7% and a 68.9% delignification levels in the biomass treated with ammonia at respectively 50 °C and 90 °C process comparing to the raw material were achieved.


AIChE Journal ◽  
2021 ◽  
Author(s):  
Anand V. Lalwani ◽  
Hang Dong ◽  
Linchao Mu ◽  
Kelly Woo ◽  
Hunter A. Johnson ◽  
...  

Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 191
Author(s):  
Tin Diep Trung Le ◽  
Vi Phuong Nguyen Truong ◽  
My Thi Tra Ngo ◽  
Tae Hyun Kim ◽  
Kyeong Keun Oh

Extremely low-liquid ammonia (ELLA) pretreatment using aqueous ammonia was investigated in order to enhance the enzymatic saccharification of corn stover and subsequent ethanol production. In this study, corn stover was treated with an aqueous ammonia solution at different ammonia loading rates (0.1, 0.2, and 0.3 g NH3/g biomass) and various liquid-to-solid (L/S) ratios (0.55, 1.12, and 2.5). The ELLA pretreatment was conducted at elevated temperatures (90–150 °C) for an extended period (24–120 h). Thereafter, the pretreated material was saccharified by enzyme digestion and subjected to simultaneous saccharification and fermentation (SSF) tests. The effects of key parameters on both glucan digestibility and xylan digestibility were analyzed using analysis of variance (ANOVA). Under optimal pretreatment conditions (L/S = 2.5, 0.1 g-NH3/g-biomass, 150 °C), 81.2% glucan digestibility and 61.1% xylan digestibility were achieved. The highest ethanol yield achieved on the SSF tests was 85.4%. The ethanol concentration was 14.5 g/L at 96 h (pretreatment conditions: liquid-to-solid ratio (L/S) = 2.5, 0.1 g-NH3/g-biomass, 150 °C, 24 h. SSF conditions: microorganism Saccharomyces cerevisiae (D5A), 15 FPU/g-glucan, CTech2, 3% w/v glucan, 37 °C, 150 rpm).


Sign in / Sign up

Export Citation Format

Share Document