scholarly journals Existence of a unique bounded solution to a linear second-order difference equation and the linear first-order difference equation

2017 ◽  
Vol 2017 (1) ◽  
Author(s):  
Stevo Stević
2019 ◽  
pp. 76-80
Author(s):  
M.I. Ayzatsky

The transformation of the N-th-order linear difference equation into a system of the first order difference equations is presented. The proposed transformation opens possibility to obtain new forms of the N-dimensional system of the first order equations that can be useful for the analysis of solutions of the N-th-order difference equations. In particular for the third-order linear difference equation the nonlinear second-order difference equation that plays the same role as the Riccati equation for second-order linear difference equation is obtained. The new form of the Ndimensional system of first order equations can also be used to find the WKB solutions of the linear difference equation with coefficients that vary slowly with index.


Author(s):  
Robert Stegliński

AbstractIn this work, we establish optimal Lyapunov-type inequalities for the second-order difference equation with p-Laplacian $$\begin{aligned} \Delta (\left| \Delta u(k-1)\right| ^{p-2}\Delta u(k-1))+a(k)\left| u(k)\right| ^{p-2}u(k)=0 \end{aligned}$$ Δ ( Δ u ( k - 1 ) p - 2 Δ u ( k - 1 ) ) + a ( k ) u ( k ) p - 2 u ( k ) = 0 with Dirichlet, Neumann, mixed, periodic and anti-periodic boundary conditions.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Emin Bešo ◽  
Senada Kalabušić ◽  
Naida Mujić ◽  
Esmir Pilav

AbstractWe consider the second-order rational difference equation $$ {x_{n+1}=\gamma +\delta \frac{x_{n}}{x^{2}_{n-1}}}, $$xn+1=γ+δxnxn−12, where γ, δ are positive real numbers and the initial conditions $x_{-1}$x−1 and $x_{0}$x0 are positive real numbers. Boundedness along with global attractivity and Neimark–Sacker bifurcation results are established. Furthermore, we give an asymptotic approximation of the invariant curve near the equilibrium point.


Filomat ◽  
2018 ◽  
Vol 32 (18) ◽  
pp. 6203-6210
Author(s):  
Vahidin Hadziabdic ◽  
Midhat Mehuljic ◽  
Jasmin Bektesevic ◽  
Naida Mujic

In this paper we will present the Julia set and the global behavior of a quadratic second order difference equation of type xn+1 = axnxn-1 + ax2n-1 + bxn-1 where a > 0 and 0 ? b < 1 with non-negative initial conditions.


2004 ◽  
Vol 15 (09) ◽  
pp. 959-965 ◽  
Author(s):  
KAZUHIRO HIKAMI

We prove that the N-colored Jones polynomial for the torus knot [Formula: see text] satisfies the second order difference equation, which reduces to the first order difference equation for a case of [Formula: see text]. We show that the A-polynomial of the torus knot can be derived from the difference equation. Also constructed is a q-hypergeometric type expression of the colored Jones polynomial for [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document