scholarly journals Existence and Ulam stability for fractional differential equations of Hilfer-Hadamard type

2017 ◽  
Vol 2017 (1) ◽  
Author(s):  
S Abbas ◽  
M Benchohra ◽  
JE Lagreg ◽  
A Alsaedi ◽  
Y Zhou
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Abdelkrim Salim ◽  
Mouffak Benchohra ◽  
Erdal Karapınar ◽  
Jamal Eddine Lazreg

Abstract In this manuscript, we examine the existence and the Ulam stability of solutions for a class of boundary value problems for nonlinear implicit fractional differential equations with instantaneous impulses in Banach spaces. The results are based on fixed point theorems of Darbo and Mönch associated with the technique of measure of noncompactness. We provide some examples to indicate the applicability of our results.


2019 ◽  
Vol 52 (1) ◽  
pp. 283-295 ◽  
Author(s):  
Manzoor Ahmad ◽  
Akbar Zada ◽  
Jehad Alzabut

AbstractIn this paper, existence and uniqueness of solution for a coupled impulsive Hilfer–Hadamard type fractional differential system are obtained by using Kransnoselskii’s fixed point theorem. Different types of Hyers–Ulam stability are also discussed.We provide an example demonstrating consistency to the theoretical findings.


2021 ◽  
Vol 6 (12) ◽  
pp. 13119-13142
Author(s):  
Yating Li ◽  
◽  
Yansheng Liu

<abstract><p>This paper is mainly concerned with the existence of multiple solutions for the following boundary value problems of fractional differential equations with generalized Caputo derivatives:</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \hskip 3mm \left\{ \begin{array}{lll} ^{C}_{0}D^{\alpha}_{g}x(t)+f(t, x) = 0, \ 0&lt;t&lt;1;\\ x(0) = 0, \ ^{C}_{0}D^{1}_{g}x(0) = 0, \ ^{C}_{0}D^{\nu}_{g}x(1) = \int_{0}^{1}h(t)^{C}_{0}D^{\nu}_{g}x(t)g'(t)dt, \end{array}\right. $\end{document} </tex-math></disp-formula></p> <p>where $ 2 &lt; \alpha &lt; 3 $, $ 1 &lt; \nu &lt; 2 $, $ \alpha-\nu-1 &gt; 0 $, $ f\in C([0, 1]\times \mathbb{R}^{+}, \mathbb{R}^{+}) $, $ g' &gt; 0 $, $ h\in C([0, 1], \mathbb{R}^{+}) $, $ \mathbb{R}^{+} = [0, +\infty) $. Applying the fixed point theorem on cone, the existence of multiple solutions for considered system is obtained. The results generalize and improve existing conclusions. Meanwhile, the Ulam stability for considered system is also considered. Finally, three examples are worked out to illustrate the main results.</p></abstract>


Sign in / Sign up

Export Citation Format

Share Document