scholarly journals Symmetric and asymmetric tilt grain boundary structure and energy in Cu and Al (and transferability to other fcc metals)

2015 ◽  
Vol 4 (1) ◽  
pp. 176-189 ◽  
Author(s):  
Mark A. Tschopp ◽  
Shawn P. Coleman ◽  
David L. McDowell
2007 ◽  
Vol 561-565 ◽  
pp. 1837-1840 ◽  
Author(s):  
Y. Inoue ◽  
Tokuteru Uesugi ◽  
Yorinobu Takigawa ◽  
Kenji Higashi

The grain boundary structure and its energy are necessary for the fundamental understanding of the physical properties of materials. In aluminum, three distinct atomic structures of a Σ9(221)[110] tilt grain boundary have been reported in previous studies using atomistic simulations and a high-resolution transmission electron microscopy (HRTEM). In this work, we studied the atomic structure and energy of the Σ9 tilt grain boundary in aluminum using first-principles calculations. A comparison of the grain boundary energies among the three distinct Σ9 tilt grain boundaries determined through first-principles calculations allowed us to identify the most stable atomic structure of Σ9 tilt grain boundary in aluminum.


Author(s):  
P. Humble

There has been sustained interest over the last few years into both the intrinsic (primary and secondary) structure of grain boundaries and the extrinsic structure e.g. the interaction of matrix dislocations with the boundary. Most of the investigations carried out by electron microscopy have involved only the use of information contained in the transmitted image (bright field, dark field, weak beam etc.). Whilst these imaging modes are appropriate to the cases of relatively coarse intrinsic or extrinsic grain boundary dislocation structures, it is apparent that in principle (and indeed in practice, e.g. (1)-(3)) the diffraction patterns from the boundary can give extra independent information about the fine scale periodic intrinsic structure of the boundary.In this paper I shall describe one investigation into each type of structure using the appropriate method of obtaining the necessary information which has been carried out recently at Tribophysics.


Sign in / Sign up

Export Citation Format

Share Document