scholarly journals Wide-field imaging in proliferative diabetic retinopathy

Author(s):  
T. Y. Alvin Liu ◽  
J. Fernando Arevalo

Abstract Background Diabetic retinopathy (DR) is one of the leading causes of vision loss worldwide. For decades, 7-field 30-degree fundus imaging has been the gold standard for DR classification. The aim of this review article is to discuss how the advent of ultra-wide-field (UWF) fundus imaging has changed the management of proliferative diabetic retinopathy (PDR). Main body Current data suggests that UWF imaging, as compared to conventional Early Treatment Diabetic Retinopathy Study (ETDRS) fields, detects additional and more extensive PDR pathologies. DR lesions, captured by UWF imaging outside of ETDRS fields, likely carry prognostication value. Conclusion UWF imaging represents a major advancement in the detection and management of DR. It remains unclear whether, when and how patients, with PDR changes only peripheral to standard ETDRS fields, should be treated. A larger, prospective, randomized clinical trial is also needed to compare the efficacy of UWF image-guided targeted laser photocoagulation with that of conventional panretinal photocoagulation.

2008 ◽  
Vol 86 ◽  
pp. 0-0
Author(s):  
C ARNDT ◽  
N NABHOLZ ◽  
E BOUSQUET ◽  
F NGUYEN

Eye ◽  
2015 ◽  
Vol 29 (3) ◽  
pp. 416-423 ◽  
Author(s):  
V Manjunath ◽  
V Papastavrou ◽  
D H W Steel ◽  
G Menon ◽  
R Taylor ◽  
...  

2017 ◽  
Vol 139 ◽  
pp. 187-190 ◽  
Author(s):  
Khalil Ghasemi Falavarjani ◽  
Irena Tsui ◽  
Srinivas R. Sadda

2016 ◽  
Vol 28 (2) ◽  
pp. 57-60 ◽  
Author(s):  
Khalil Ghasemi Falavarjani ◽  
Kang Wang ◽  
Joobin Khadamy ◽  
Srinivas R. Sadda

2015 ◽  
Vol 08 (02) ◽  
pp. 125 ◽  
Author(s):  
Esther Lee Kim ◽  
Andrew A Moshfeghi ◽  
◽  

Retinal imaging serves as a critical adjunct to the diagnosis, monitoring, and treatment of numerous ocular diseases. In particular, wide-field retinal imaging is quickly moving to the forefront in imaging the posterior segment. While conventional fundus imaging captures 30 to 50° field of view in a single capture, significant advances have been made in the past 2 decades to increase the viewing angle, speed, and accuracy of fundus photography, such that a single-field capture is now up to 200°. Moreover, multiple imaging modalities, including color fundus photography, fluorescein angiography, and autofluorescence, are now available a single wide-field imaging platform. This breadth of functionality makes wide-field imaging especially useful in peripheral retinal vascular diseases, such as diabetic retinopathy, posterior uveitis, and retinopathy of prematurity. This review aims to provide a historical perspective on wide-field retinal imaging, highlight the imaging platforms currently available, discuss the advantages and disadvantages of wide-field versus conventional fundus imaging, summarize the current clinical applications of wide-field retinal imaging, and provide an outlook for its future implications.


2017 ◽  
Vol 102 (3) ◽  
pp. 383-387 ◽  
Author(s):  
Thomas Lee Torp ◽  
Ryo Kawasaki ◽  
Tien Yin Wong ◽  
Tunde Peto ◽  
Jakob Grauslund

Background/AimsProliferative diabetic retinopathy (PDR) is a severe blinding condition. We investigated whether retinal metabolism, measured by retinal oximetry, may predict PDR activity after panretinal laser photocoagulation (PRP).MethodsWe performed a prospective, interventional, clinical study of patients with treatment-naive PDR. Wide-field fluorescein angiography (OPTOS, Optomap) and global and focal retinal oximetry (Oxymap T1) were performed at baseline (BL), and 3 months (3M) after PRP. Angiographic findings were used to divide patients according to progression or non-progression of PDR after PRP. We evaluated differences in global and focal retinal oxygen saturation between patients with and without progression of PDR after PRP treatment.ResultsWe included 45 eyes of 37 patients (median age and duration of diabetes were 51.6 and 20 years). Eyes with progression of PDR developed a higher retinal venous oxygen saturation than eyes with non-progression at 3M (global: +5.9% (95% CI –1.5 to 12.9), focal: +5.4%, (95% CI –4.1 to 14.8)). Likewise, progression of PDR was associated with a lower arteriovenular (AV) oxygen difference between BL and 3M (global: –6.1%, (95% CI –13.4 to –1.4), focal: –4.5% (95% CI –12.1 to 3.2)). In a multiple logistic regression model, increment in global retinal venular oxygen saturation (OR 1.30 per 1%-point increment, p=0.017) and decrement in AV oxygen saturation difference (OR 0.72 per 1%-point increment, p=0.016) at 3M independently predicted progression of PDR.ConclusionDevelopment of higher retinal venular and lower AV global oxygen saturation independently predicts progression of PDR despite standard PRP and might be a potential non-invasive marker of angiogenic disease activity.


Author(s):  
Marguerite O. Linz ◽  
Adrienne W. Scott

Abstract Background Wide-field imaging is a newer retinal imaging technology, capturing up to 200 degrees of the retina in a single photograph. Individuals with sickle cell retinopathy commonly exhibit peripheral retinal ischemia. Patients with proliferative sickle cell retinopathy develop pathologic retinal neovascularization of the peripheral retina which may progress into sight-threatening sequelae of vitreous hemorrhage and/or retinal detachment. The purpose of this review is to provide an overview of current and future applications of wide-field retinal imaging for sickle cell retinopathy, and recommend indications for best use. Main body There are several advantages to wide-field imaging in the clinical management of sickle cell disease patients. Retrospective and prospective studies support the success of wide-field imaging in detecting more sickle cell induced retinal microvascular abnormalities than traditional non-wide-field imaging. Clinicians can easily capture a greater extent of the retinal periphery in a patient’s clinical baseline imaging to follow the changes at an earlier point and determine the rate of progression over time. Wide-field imaging minimizes patient and photographer burden, necessitating less photos and technical skill to capture the peripheral retina. Minimizing the number of necessary images can be especially helpful for pediatric patients with sickle cell retinopathy. Wide-field imaging has already been successful in identifying new biomarkers and risk factors for the development of proliferative sickle cell retinopathy. While these advantages should be considered, clinicians need to perform a careful risk–benefit analysis before ordering this test. Although wide-field fluorescein angiography successfully detects additional pathologic abnormalities compared to traditional imaging, a recent research study suggests that peripheral changes differentially detected by wide-field imaging may not change clinical management for most sickle cell patients. Conclusions While wide-field imaging may not carry a clinically significant direct benefit to all patients, it shows future promise in expanding our knowledge of sickle cell retinopathy. Clinicians may monitor peripheral retinal pathology such as retinal ischemia and retinal neovascularization over progressive time points, and use sequential wide-field retinal images to monitor response to treatment. Future applications for wide-field imaging may include providing data to facilitate machine learning, and potential use in tele-ophthalmology screening for proliferative sickle retinopathy.


Author(s):  
Akio Oishi ◽  
Manabu Miyata ◽  
Shogo Numa ◽  
Yuki Otsuka ◽  
Maho Oishi ◽  
...  

Abstract Background Inherited retinal degeneration (IRD) refers to a heterogenous group of progressive diseases that cause death of photoreceptor cells and subsequent vision loss. These diseases often affect the peripheral retina, objective evaluation of which has been difficult until recently. Fundus autofluorescence (FAF) is a non-invasive retinal imaging technique that depicts the distribution of intrinsic fluorophores in the retina. The primary source of retinal autofluorescence is lipofuscin, which is contained in the retinal pigment epithelium (RPE). Excessive accumulation of lipofuscin and a window defect attributable to loss of photoreceptor pigment result in increased FAF whereas loss of the RPE results in decreased FAF. These changes can be seen during the course of IRD. Mainbody While conventional modalities are limited in their angle of view, recent technologic advances, known as wide-field and ultra-widefield FAF imaging, have enabled visualization of the far peripheral retina. Although clinical application of this technique in patients with IRD is still in its infancy, some studies have already indicated its usefulness. For example, an area with decreased FAF correlates well with a visual field defect in an eye with retinitis pigmentosa (RP) or cone-rod dystrophy. An abnormal FAF pattern may help in the diagnosis of IRD and associated diseases. In addition, female carriers of X-linked RP and female choroideremia show characteristic appearance. Conversely, absence of abnormal FAF despite severe retinal degeneration helps differentiation of cancer-associated retinopathy. Conclusion This paper reviews the principles of FAF, wide-field imaging, and findings in specific diseases. Wide-field imaging, particularly wide-field FAF, will provide further information for the characteristics, prognosis, and pathogenesis of IRD.


Sign in / Sign up

Export Citation Format

Share Document