scholarly journals High performance decoupled active and reactive power control for three-phase grid-tied inverters using model predictive control

Author(s):  
Mohamed Azab

AbstractFinite control set-model predictive control (FCS-MPC) is employed in this paper to control the operation of a three-phase grid-connected string inverter based on a direct PQ control scheme. The main objective is to achieve high-performance decoupled control of the active and reactive powers injected to the grid from distributed energy resources (DER).The FCS-MPC scheme instantaneously searches for and applies the optimum inverter switching state that can achieve certain goals, such as minimum deviation between reference and actual power; so that both power components (P and Q) are well controlled to their reference values.In addition, an effective method to attenuate undesired cross coupling between the P and Q control loops, which occurs only during transient operation, is investigated. The proposed method is based on the variation of the weight factors of the terms of the FCS-MPC cost function, so a higher weight factor is assigned to the cost function term that is exposed to greater disturbance. Empirical formulae of optimum weight factors as functions of the reference active and reactive power signals are proposed and mathematically derived. The investigated FCS-MPC control scheme is incorporated with the LVRT function to support the grid voltage in fulfilling and accomplishing the up-to-date grid codes. The LVRT algorithm is based on a modification of the references of active and reactive powers as functions of the instantaneous grid voltage such that suitable values of P and Q are injected to the grid during voltage sag.The performance of the elaborated FCS-MPC PQ scheme is studied under various operating scenarios, including steady-state and transient conditions. Results demonstrate the validity and effectiveness of the proposed scheme with regard to the achievement of high-performance operation and quick response of grid-tied inverters during normal and fault modes.

Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2691 ◽  
Author(s):  
Xiaotao Chen ◽  
Weimin Wu ◽  
Ning Gao ◽  
Jiahao Liu ◽  
Henry Shu-Hung Chung ◽  
...  

This paper proposes a novel finite control set model predictive control (FCS-MPC) strategy with merely grid-injected current sensors for an inductance-capacitance-inductance (LCL)-filtered grid-tied inverter, which can obtain a sinusoidal grid-injected current whether three-phase grid voltages are balanced or not. Compared with the conventional FCS-MPC method, four compositions are added in the proposed FCS-MPC algorithm, where the grid voltage observer (GVO) and Luenberger observer are combined together to achieve full status estimations (including grid voltage, capacitor voltage, inverter-side current, and grid-injected current), while the sequence extractor and the reference generator are applied to eliminate the double frequency ripples of the active or reactive power, or the negative sequence component (NSC) of the grid-injected current caused by the unbalanced grid voltage. Simulation model and experimental platform are established to verify the effectiveness of the proposed FCS-MPC strategy, with full status estimations under both balanced and unbalanced grid voltage conditions.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Qian Zhong ◽  
Ronald W. Yeung

Model-predictive control (MPC) has shown its strong potential in maximizing energy extraction for wave-energy converters (WECs) while handling hard constraints. However, the computational demand is known to be a primary concern for applying MPC in real time. In this work, we develop a cost function in which a penalty term on the slew rate of the machinery force is introduced and used to ensure the convexity of the cost function. Constraints on states and the input are incorporated. Such a constrained optimization problem is cast into a Quadratic Programming (QP) form and efficiently solved by a standard QP solver. The current MPC is found to have good energy-capture capability in both regular and irregular wave conditions, and is able to broaden favorably the bandwidth for capturing wave energy compared to other controllers in the literature. Reactive power required by the power-take-off (PTO) system is presented. The effects of the additional penalty term are discussed.


Sign in / Sign up

Export Citation Format

Share Document