wave energy converters
Recently Published Documents


TOTAL DOCUMENTS

952
(FIVE YEARS 369)

H-INDEX

42
(FIVE YEARS 11)

2022 ◽  
Vol 245 ◽  
pp. 110342
Author(s):  
Benjamin W. Schubert ◽  
Nataliia Y. Sergiienko ◽  
Benjamin S. Cazzolato ◽  
William S.P. Robertson ◽  
Mergen H. Ghayesh

2022 ◽  
Author(s):  
Nguyen Hoai Nam

There exist several approaches to design the optimal control strategy to harvest wave energy with a point absorber. However they are generally based on the assumption that the WEC and the PTO dynamics are well-known. In the practical WEC control implementation, this is generally not the case. The objective of this paper is to design a robust optimal control strategy that can take into account the uncertain WEC and PTO dynamics. Our choice is a robust adaptive PI control law. The proposed controller is validated and compared through simulation for irregular sea states.


2022 ◽  
Author(s):  
Nguyen Hoai Nam

There exist several approaches to design the optimal control strategy to harvest wave energy with a point absorber. However they are generally based on the assumption that the WEC and the PTO dynamics are well-known. In the practical WEC control implementation, this is generally not the case. The objective of this paper is to design a robust optimal control strategy that can take into account the uncertain WEC and PTO dynamics. Our choice is a robust adaptive PI control law. The proposed controller is validated and compared through simulation for irregular sea states.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 570
Author(s):  
Anargyros S. Mavrakos ◽  
Dimitrios N. Konispoliatis ◽  
Dimitrios G. Ntouras ◽  
George P. Papadakis ◽  
Spyros A. Mavrakos

Moonpool-type floaters were initially proposed for applications such as artificial islands or as protecting barriers around a small area enabling work at the inner surface to be carried out in relatively calm water. In recent years, a growing interest on such structures has been noted, especially in relation to their use as heaving wave energy converters or as oscillating water column (OWC) devices for the extraction of energy from waves. Furthermore, in the offshore marine industry, several types of vessels are frequently constructed with moonpools. The present paper deals with the hydrodynamics of bottomless cylindrical bodies having vertical symmetry axis and floating in a water of finite depth. Two computation methods were implemented and compared: a theoretical approach solving analytically the corresponding diffraction problem around the moonpool floater and a computational fluid dynamics (CFD) solver, which considers the viscous effects near the sharp edges of the body (vortex shedding) as non-negligible. Two different moonpool-type configurations were examined, and some interesting phenomena were discussed concerning the viscous effects and irregularities caused by the resonance of the confined fluid.


2022 ◽  
Author(s):  
C. Windt

Abstract. Numerical modelling tools are commonly applied during the development and optimisation of ocean wave energy converters (WECs). Models are available for the hydrodynamic wave structure interaction, as well as the WEC sub–systems, such as the power take–off (PTO) model. Based on the implemented equations, different levels of fidelity are available for the numerical models. Specifically under controlled conditions, with enhance WEC motion, it is assumed that non-linearities are more prominent, re- quiring the use of high–fidelity modelling tools. Based on two different test cases for two different WECs, this paper highlights the importance of high–fidelity numerical modelling of WECs under controlled conditions.


Sign in / Sign up

Export Citation Format

Share Document