scholarly journals Critical peak rebate strategy and application to demand response

Author(s):  
Hejun Yang ◽  
Xinyu Zhang ◽  
Yinghao Ma ◽  
Dabo Zhang

AbstractTime-of-use (TOU) pricing strategy is an important component of demand-side management (DSM), but the cost of supplying power during critical peak periods remains high under TOU prices. This affects power system reliability. In addition, TOU prices are usually applicable to medium- and long-term load control but cannot effectively regulate short-term loads. Therefore, this paper proposes an optimization method for TOU pricing and changes the electricity consumption patterns during the critical peak periods through a critical peak rebate (CPR). This reduces generation costs and improves power system reliability. An optimization model for peak-flat-valley (PFV) period partition is established based on fuzzy clustering and an enumeration iterative technique. A TOU pricing optimization model including grid-side and customer-side benefits is then proposed, and a simulated annealing particle swarm optimization (SAPSO) algorithm is used to solve the problem. Finally, a CPR decision model is developed to further reduce critical peak loads. The effectiveness of the proposed model and algorithm is illustrated through different case studies of the Roy Billinton Test System (RBTS).

2008 ◽  
Vol 2 (1) ◽  
pp. 82 ◽  
Author(s):  
J. Skea ◽  
D. Anderson ◽  
T. Green ◽  
R. Gross ◽  
P. Heptonstall ◽  
...  

2012 ◽  
Vol 608-609 ◽  
pp. 742-747
Author(s):  
Chun Hong Zhao ◽  
Lian Guang Liu ◽  
Zi Fa Liu ◽  
Ying Chen

The integration of wind farms has a significant impact on the power system reliability. An appropriate model used to assess wind power system reliability is needed. Establishing multi-objective models (wind speed model, wind turbine generator output model and wind farm equivalent model) and based on the non-sequential Monte Carlo simulation method to calculate risk indicators is a viable method for quantitatively assessing the reliability of power system including wind farms. The IEEE-RTS 79 test system and a 300MW wind farm are taken as example.The calculation resluts show that using the multi-objective models can improve accuracy and reduce error; the higher average wind speed obtains the better system reliabitity accordingly.


Author(s):  
Venkata Satheesh Babu K ◽  
Madhusudan V ◽  
Ganesh V

Composite power system reliability involves assessing the adequacy of generation and transmission system to meet the demand at major system load points. Contingency selection was being the most tedious step in reliability evaluation of large electric systems. Contingency in power system might be a possible event in future which was not predicted with certainty in earlier research. Therefore, uncertainty may be inevitable in power system operation. Deterministic indices may not guarantee the randomness in reliability assessment. In order to account for volatility in contingencies, a new performance index proposed in the current research. Proposed method assimilates the uncertainty in computational procedure. Reliability test systems like Roy Billinton Test System-6 bus system and IEEE-24 bus reliability test systems were used to test the effectiveness of a proposed method.


2019 ◽  
Vol 9 (15) ◽  
pp. 3003 ◽  
Author(s):  
Honghao Wu ◽  
Junyong Liu ◽  
Jichun Liu ◽  
Mingjian Cui ◽  
Xuan Liu ◽  
...  

The cybersecurity of wind farms is an increasing concern in recent years, and its impacts on the power system reliability have not been fully studied. In this paper, the pressing issues of wind farms, including cybersecurity and wind power ramping events (WPRs) are incorporated into a new reliability evaluation approach. Cyber–physical failures like the instantaneous failure and longtime fatigue of wind turbines are considered in the reliability evaluation. The tripping attack is modeled in a bilevel optimal power flow model which aims to maximize the load shedding on the system’s vulnerable moment. The time-varying failure rate of wind turbine is approximated by Weibull distribution which incorporates the service time and remaining life of wind turbine. Various system defense capacities and penetration rates of wind power are simulated on the typical reliability test system. The comparative and sensitive analyses show that power system reliability is challenged by the cybersecurity of wind farms, especially when the installed capacity of wind power continues to rise. The timely patching of network vulnerabilities and the life management of wind turbines are important measures to ensure the cyber–physical security of wind farms.


Sign in / Sign up

Export Citation Format

Share Document