scholarly journals Examining the role of astrogliosis and JNK signaling in post-traumatic epilepsy

2022 ◽  
Vol 37 (1) ◽  
Author(s):  
Coulter Small ◽  
Abeer Dagra ◽  
Melanie Martinez ◽  
Eric Williams ◽  
Brandon Lucke-Wold

Abstract Objective Post-traumatic epilepsy is a devastating complication of traumatic brain injury that has no targeted pharmacological therapy. Previous literature has explored the role of the c-Jun N-terminal kinase (JNK) pathway in epilepsy and the creation of epileptogenic foci by reactive astrogliosis; however, the relationship between reactive astrogliosis and the c-Jun N-terminal kinase signaling pathway in the development of post-traumatic epilepsy has not been thoroughly examined. Methods Four experimental groups, consisting of c57/b16 male mice, were examined: (1) control, (2) traumatic brain injury of graded severity (mild, moderate, severe), (3) sub-convulsive kainic acid alone without traumatic brain injury (15 mg/kg i.p.), and (4) sub-convulsive kainic acid administered 72 h after moderate traumatic brain injury. Modified Racine scale from 1 to 72 h and total beam breaks at 72 h were used to assess seizure activity. Immunohistochemistry and western blot were utilized to examine astrogliosis (GFAP), microglia activation (IBA-1), and phosphorylated JNK in prefrontal cortex samples collected from the contracoup side at 72 h post-injury. Results Astrogliosis, measured by GFAP, was increased after traumatic brain injury and increased commensurately based on the degree of injury. Mice with traumatic brain injury demonstrated a four-fold increase in phosphorylated JNK: p < 0.001. Sub-convulsive kainic acid administration did not increase seizure activity nor phosphorylation of JNK in mice without traumatic brain injury; however, sub-convulsive kainic acid administration in mice with moderate traumatic brain injury did increase phosphorylated JNK. Seizure activity was worse in mice, with traumatic brain injury, administered kainic acid than mice administered kainic acid. Conclusions Reactive astrocytes may have dysfunctional glutamate regulation causing an increase in phosphorylated JNK after kainic acid administration. Future studies exploring the effects of JNK inhibition on post-traumatic epilepsy are recommended.

Trauma ◽  
2017 ◽  
Vol 20 (2) ◽  
pp. 88-93
Author(s):  
Takao Arai ◽  
Shoichi Ohta ◽  
Junya Tsurukiri ◽  
Taishi Oomura ◽  
Yousuke Tanaka ◽  
...  

2013 ◽  
Vol 21 (2) ◽  
pp. 222-228
Author(s):  
Daniel Garbin Di Luca ◽  
Glenda Corrêa Borges de Lacerda

Introduction. The estimated time interval in which an individual can develop Post Traumatic Epilepsy (PTE) after a traumatic brain injury (TBI) is not clear. Objective. To assess the possible influence of the clinical features in the time interval between TBI and PTE develop­ment. Method. We analyzed retrospectively 400 medical records from a tertiary Brazilian hospital. We selected and reevaluated 50 patients and data was confronted with the time between TBI and PTE devel­opment by a Kaplan-Meier survival analysis. A Cox-hazard regression was also conducted to define the characteristics that could be involved in the latent period of the PTE development. Results. Patients devel­oped PTE especially in the first year (56%). We found a tendency of a faster development of PTE in patients older than 24 years (P<0.0001) and in men (P=0.03). Complex partial seizures evolving to generalized seizures were predominant in patients after moderate (37.7%) and severe (48.8%) TBIs, and simple partial seizures evolving to general­ized seizures in mild TBIs (45.5%). Conclusions. Our data suggest that the first year after a TBI is the most critical period for PTE de­velopment and those males older than 24 years could have a faster development of PTE.


2018 ◽  
Vol 83 (4) ◽  
pp. 858-862 ◽  
Author(s):  
Jennifer A. Kim ◽  
Emily J. Boyle ◽  
Alexander C. Wu ◽  
Andrew J. Cole ◽  
Kevin J. Staley ◽  
...  

Diagnostics ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 4 ◽  
Author(s):  
Kristin A. Keith ◽  
Jason H. Huang

Traumatic brain injury is the leading cause of morbidity and mortality worldwide, with the incidence of post-traumatic epilepsy increasing with the severity of the head injury. Post-traumatic epilepsy (PTE) is defined as a recurrent seizure disorder secondary to trauma to the brain and has been described as one of the most devastating complications associated with TBI (Traumatic Brain Injury). The goal of this review is to characterize current animal models of PTE and provide succinct protocols for the development of each of the currently available animal models. The development of translational and effective animal models for post-traumatic epilepsy is critical in both elucidating the underlying pathophysiology associated with PTE and providing efficacious clinical breakthroughs in the management of PTE.


Neuroreport ◽  
2014 ◽  
pp. 1 ◽  
Author(s):  
Mustafa Q. Hameed ◽  
Grant S. Goodrich ◽  
Sameer C. Dhamne ◽  
Asa Amandusson ◽  
Tsung-Hsun Hsieh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document