scholarly journals Can white matter lesion burden predict involvement of normal appearing thalami in multiple sclerosis? Study using 3D FLAIR and DTI

Author(s):  
Mohamed D. Homos

Abstract Background Multiple sclerosis is a chronic demyelinating disease that affects the white and grey matter. The thalamus is responsible for many neurological functions, and it is liable to damage in multiple sclerosis in the absence of MRI-detectable thalamic lesions. Standardized imaging protocol for multiple sclerosis includes 3D FLAIR sequence that is highly sensitive in detecting white matter lesions. Owing to the thalamic functional importance, we aim in this study to show to what extent the standardized imaging protocol (3D FLAIR) can predict microscopic damage of normal appearing thalami, depending on DTI metrics (ADC and FA) as indicators of the microscopic damage. Results We examined 42 multiple sclerosis patients, 16 males and 26 females, with mean age 29 ± 6 years using 3D FLAIR sequence to delineate the white matter lesions and calculate their total areas and using DTI to calculate the average ADC and FA values of the thalami. Spearman’s correlation coefficient (r) was used to correlate between the white matter lesion burden and the thalamic diffusivity (ADC and FA). Moderate correlation was found between average ADC values of the thalami and the total white matter lesion areas (r = 0.5, p = 0.03). Very weak correlation was found between average FA values of the thalami and the total white matter lesion areas (r = − 0.1, p = 0.6) Conclusion White matter lesion burden detected using the highly sensitive 3D FLAIR sequence does not always correlate with the microstructural damage in normal appearing thalami. DTI needs to be added to the examination protocol if damage of normal appearing thalami is of concern.

2016 ◽  
Vol 46 (2) ◽  
pp. 557-564
Author(s):  
Refaat E. Gabr ◽  
Amol S. Pednekar ◽  
Koushik A. Govindarajan ◽  
Xiaojun Sun ◽  
Roy F. Riascos ◽  
...  

Author(s):  
Cheng‐Chih Hsiao ◽  
Nina L. Fransen ◽  
Aletta M.R. den Bosch ◽  
Kim I.M. Brandwijk ◽  
Inge Huitinga ◽  
...  

2017 ◽  
Vol 134 (3) ◽  
pp. 383-401 ◽  
Author(s):  
Gijsbert P. van Nierop ◽  
Marvin M. van Luijn ◽  
Samira S. Michels ◽  
Marie-Jose Melief ◽  
Malou Janssen ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249973
Author(s):  
Seongjin Choi ◽  
Margaret Spini ◽  
Jun Hua ◽  
Daniel M. Harrison

Although the blood-brain barrier (BBB) is altered in most multiple sclerosis (MS) lesions, gadolinium enhancement is seen only in acute lesions. In this study, we aimed to investigate gadolinium-induced changes in T1 relaxation time in MS lesions on 7-tesla (7T) MRI as a means to quantify BBB breakdown in non-enhancing MS lesions. Forty-seven participants with MS underwent 7T MRI of the brain with a magnitude-prepared rapid acquisition of 2 gradient echoes (MP2RAGE) sequence before and after contrast. Subtraction of pre- and post-contrast T1 maps was used to measure T1 relaxation time change (ΔT1) from gadolinium. ΔT1 values were interrogated in enhancing white matter lesions (ELs), non-enhancing white matter lesions (NELs), and normal appearing white matter (NAWM) and metrics were compared to clinical data. ΔT1 was measurable in NELs (median: -0.139 (-0.304, 0.174) seconds; p < 0.001) and was negligible in NAWM (median: -0.001 (-0.036, 0.155) seconds; p = 0.516). Median ΔT1 in NELs correlated with disability as measured by Expanded Disability Status Scale (EDSS) (rho = -0.331, p = 0.026). Multiple measures of NEL ΔT1 variability also correlated with EDSS. NEL ΔT1 values were greater and more variable in patients with progressive forms of MS and greater in those not on MS treatment. Measurement of the changes in T1 relaxation time caused by contrast on 7T MP2RAGE reveals clinically relevant evidence of BBB breakdown in NELs in MS. This data suggests that NEL ΔT1 should be evaluated further as a biomarker for disease severity and treatment effect in MS.


2021 ◽  
Vol 429 ◽  
pp. 118301
Author(s):  
Gianmarco Severa ◽  
Rosa Cortese ◽  
Antonio Covelli ◽  
Marco Battaglini ◽  
Jian Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document