Application of the recursive‐approaching signal filter (RASF) to VSP data processing

Geophysics ◽  
1997 ◽  
Vol 62 (4) ◽  
pp. 1059-1068 ◽  
Author(s):  
Chuanwen Sun ◽  
Philip D. Rabinowitz ◽  
Norman C. Griswold

The recursive‐approaching signal filter (RASF) is a newly developed filtering technique that combines many advantages of linear, nonlinear, and adaptive filters. It passes step functions without altering them and removes many types of noise, such as Gaussian and Laplacian distributed noise. When applied to VSP data processing, the RASF emphasizes those abrupt discontinuities that originate or terminate at discrete depth points and effectively accomplishes the separation of upgoing and downgoing wave modes. The RASF may be transformed into a desired filter by simply changing a parameter to achieve the maximum usefulness of VSP field data. In the tests with the synthetic VSP modeling data corrupted by white Gaussian noise and real VSP data, the RASF compares favorably to f-k velocity and median filtering methods in removing noise, preserving step functions, and computational simplicity.

First Break ◽  
2020 ◽  
Vol 38 (6) ◽  
pp. 29-36
Author(s):  
G. Yu ◽  
J.L. Xiong ◽  
J.J. Wu ◽  
Y.Z. Chen ◽  
Y.S. Zhao

Biometrics ◽  
2017 ◽  
pp. 1105-1144
Author(s):  
Punyaban Patel ◽  
Bibekananda Jena ◽  
Bibhudatta Sahoo ◽  
Pritam Patel ◽  
Banshidhar Majhi

Images very often get contaminated by different types of noise like impulse noise, Gaussian noise, spackle noise etc. due to malfunctioning of camera sensors during acquisition or transmission using the channel. The noise in the channel affects processing of images in various ways. Hence, the image has to be restored by applying filtration process before the high level image processing. In general the restoration techniques for images are based up on the mathematical and the statistical models of image degradation. Denoising and deblurring are used to recover the image from degraded observations. The researchers have proposed verity of linear and non-linear filters for removal of noise from images. The filtering technique has been used to remove noisy pixels, without changing the uncorrupted pixel values. This chapter presents the metrics used for measurement of noise, and the various schemes for removing of noise from the images.


Author(s):  
Punyaban Patel ◽  
Bibekananda Jena ◽  
Bibhudatta Sahoo ◽  
Pritam Patel ◽  
Banshidhar Majhi

Images very often get contaminated by different types of noise like impulse noise, Gaussian noise, spackle noise etc. due to malfunctioning of camera sensors during acquisition or transmission using the channel. The noise in the channel affects processing of images in various ways. Hence, the image has to be restored by applying filtration process before the high level image processing. In general the restoration techniques for images are based up on the mathematical and the statistical models of image degradation. Denoising and deblurring are used to recover the image from degraded observations. The researchers have proposed verity of linear and non-linear filters for removal of noise from images. The filtering technique has been used to remove noisy pixels, without changing the uncorrupted pixel values. This chapter presents the metrics used for measurement of noise, and the various schemes for removing of noise from the images.


2004 ◽  
Vol 27 (3) ◽  
pp. 404-405 ◽  
Author(s):  
Valeri Goussev

The Kalman filtering technique is considered as a part of concurrent data-processing techniques also related to detection, parameter evaluation, and identification. The adaptive properties of the filter are discussed as being related to symmetrical brain structures.


Geophysics ◽  
1995 ◽  
Vol 60 (2) ◽  
pp. 341-353 ◽  
Author(s):  
Xiao‐Gui Miao ◽  
Wooil M. Moon ◽  
B. Milkereit

A multioffset, three‐component vertical seismic profiling (VSP) experiment was carried out in the Sudbury Basin, Ontario, as a part of the LITHOPROBE Sudbury Transect. The main objectives were determination of the shallow velocity structure in the middle of the Sudbury Basin, development of an effective VSP data processing flow, correlation of the VSP survey results with the surface seismic reflection data, and demonstration of the usefulness of the VSP method in a crystalline rock environment. The VSP data processing steps included rotation of the horizontal component data, traveltime inversion for velocity analysis, Radon transform for wavefield separation, and preliminary analysis of shear‐wave data. After wavefield separation, the flattened upgoing wavefields for both P‐waves and S‐waves display consistent reflection events from three depth levels. The VSP-CDP transformed section and corridor stacked section correlate well with the high‐resolution surface reflection data. In addition to obtaining realistic velocity models for both P‐ and S‐waves through least‐square inversion and synthetic seismic modeling for the Chelmsford area, the VSP experiment provided an independent estimation for the reflector dip using three component hodogram analysis, which indicates that the dip of the contact between the Chelmsford and Onwatin formations, at an approximate depth of 380 m in the Chelmsford borehole, is approximately 10.5° southeast. This study demonstrates that multioffset, three‐component VSP experiments can provide important constraints and auxiliary information for shallow crustal seismic studies in crystalline terrain. Thus, the VSP technique bridges the gap between the surface seismic‐reflection technique and well‐log surveys.


2019 ◽  
Author(s):  
Dongjie Cheng ◽  
Xiaomin Zhao ◽  
Mark Willis ◽  
Ran Zhou ◽  
Minyu Zhang ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document