Joint stochastic inversion of pre‐stack seismic data and well logs for high‐resolution reservoir delineation and improved production forecast

2003 ◽  
Author(s):  
Omar J. Varela ◽  
Carlos Torres‐Verdin ◽  
Mrinal K. Sen
2015 ◽  
Vol 3 (3) ◽  
pp. SY27-SY40 ◽  
Author(s):  
Sherif M. Hanafy ◽  
Ann Mattson ◽  
Ronald L. Bruhn ◽  
Shengdong Liu ◽  
Gerard T. Schuster

We have developed two case studies demonstrating the use of high-resolution seismic tomography and reflection imaging in the field of paleoseismology. The first study, of the Washington fault in southern Utah, USA, evaluated the subsurface deposits in the hanging wall of the normal fault. The second study, of the Mercur fault in the eastern Great Basin of Utah, USA, helped to establish borehole locations for sampling subsurface colluvial deposits buried deeper than those previously trenched along the fault zone. We evaluated the seismic data interpretations by comparison with data obtained by trenching and logging deposits across the Washington fault, and by drill-core sampling and video logging of boreholes penetrating imaged deposits along the Mercur fault. The seismic tomograms provided critical information on colluvial wedges and faults but lacked sufficient detail to resolve individual paleoearthquakes.


Geophysics ◽  
2010 ◽  
Vol 75 (3) ◽  
pp. R47-R59 ◽  
Author(s):  
R. P. Srivastava ◽  
M. K. Sen

In general, inversion algorithms rely on good starting models to produce realistic earth models. A new method, based on a fractional Gaussian distribution derived from the statistical parameters of available well logs to generate realistic initial models, uses fractal theory to generate these models. When such fractal-based initial models estimate P- and S-impedance profiles in a prestack stochastic inversion of seismic angle gathers, very fast simulated annealing — a global optimization method — finds the minimum of an objective function that minimizes data misfit and honors the statistics derived from well logs. The new stochastic inversion method addresses frequencies missing because of band limitation of the wavelet; it combines the low- and high-frequency variation from well logs with seismic data. This method has been implemented successfully using real prestack seismic data, and results have been compared with deterministic inversion. Models derived by a deterministic inversion are devoid of high-frequency variations in the well log; however, models derived by stochastic inversion reveal high-frequency variations that are consistent with seismic and well-log data.


Author(s):  
A. Contreras ◽  
C. Torres-Verdin ◽  
K. Kvien ◽  
T. Fasnacht ◽  
W. Chesters

2014 ◽  
Vol 33 (5) ◽  
pp. 520-525 ◽  
Author(s):  
Arturo Contreras ◽  
Carlos Torres-Verdín ◽  
Timothy Fasnacht ◽  
William Chesters ◽  
Knut Kvien

2021 ◽  
pp. 3612-3619
Author(s):  
Mohammed H. Al-Aaraji ◽  
Hussein H. Karim

      The seismic method depends on the nature of the reflected waves from the interfaces between layers, which in turn depends on the density and velocity of the layer, and this is called acoustic impedance. The seismic sections of the East Abu-Amoud field that is located in Missan Province, south-eastern Iraq, were studied and interpreted for updating the structural picture of the major Mishrif Formation for the reservoir in the Abu-amoud field. The Mishrif Formation is rich in petroleum in this area, with an area covering about 820 km2. The seismic interpretation of this study was carried out utilizing the software of Petrel-2017. The horizon was calibrated and defined on the seismic section with well-logs data (well tops, check shot, sonic logs, and density logs) in the interpretations process for identifying the upper and lower boundaries of Mishrif Formation. As well, mapping of two-way time and depth structural maps was carried out, to aid in understanding the lateral and vertical variations and to show the formation of the structural surfaces. The study found that Mishrif thickness increases toward the east, which means that it increases from the Abu-Amoud field in Nasiriyah towards the East Abu-Amoud field in Missan province.       The aim of the study is to draw a high-resolution structural image of the East Abu Amoud field in southeast Iraq and to show the types of the existing faults and structures in the study area.


2021 ◽  
Vol 42 (1) ◽  
Author(s):  
Ho-Young Lee ◽  
Nam-Hyung Koo ◽  
Byoung-Yeop Kim ◽  
Young-Jun Kim ◽  
Woohyun Son ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document