petrophysical modeling
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 16)

H-INDEX

3
(FIVE YEARS 2)

2021 ◽  
Vol 40 (12) ◽  
pp. 876-885
Author(s):  
Danilo Jotta Ariza Ferreira ◽  
Gabriella Martins Baptista de Oliveira ◽  
Thais Mallet Castro ◽  
Raquel Macedo Dias ◽  
Wagner Moreira Lupinacci

An embedded model estimator (EMBER) petrophysical modeling algorithm has been applied to obtain effective porosity and permeability within the presalt carbonate reservoirs of the Barra Velha Formation in Buzios Field, Santos Basin. This advanced methodology was used due to the heterogeneity and complexity of the reservoirs, which makes modeling by conventional geostatistical methodologies difficult. For effective porosity modeling, we chose one facies model, one stratigraphic seismic attribute (acoustic impedance), and one structural seismic attribute (local flatness) as secondary variables. Permeability was modeled by using the best effective porosity simulation result as a secondary variable. Our results demonstrate that average effective porosity and permeability were 0.10 v/v and 440 md, respectively, indicating good reservoir quality throughout the studied area. A vertical trend of high effective porosities and permeabilities for the basal and uppermost reservoir sections was identified in our results, as well as a trend with lower values for these reservoir properties for the intermediate reservoir section. The lower section of the formation presented more continuity, and we infer it to be the best reservoir interval. We observed two horizontal trends for these reservoir properties at the formation top: one of higher values aligned to the north–south direction at the structural highs and another of lower reservoir properties related to isolated structural lows within structural highs. Correlation between modeled results and the blind test ANP-1 well upscaled properties was high, and upscaled well-log property distributions were preserved in the EMBER simulations, proving the predictive capacity of the algorithm. Finally, conditional distributions analysis indicated that the basal section of the Barra Velha Formation presents higher uncertainty for the estimation of effective porosity. Even though this interval is considered to have the best reservoir characteristics, decision making should be done with caution for this section.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 1) ◽  
Author(s):  
Khawaja Hasnain Iltaf ◽  
Dali Yue ◽  
Wurong Wang ◽  
Xiaolong Wan ◽  
Shixiang Li ◽  
...  

Abstract Tight sandstone reservoirs are widely distributed worldwide. The Upper Triassic Chang 6 member of the Yanchang Formation is characterized by low permeability and porosity. The facies model offers a unique approach for understanding the characteristics of various environments also heterogeneity, scale, and control of physical processes. The role of subsurface facies features and petrophysical properties was unclear. Notable insufficient research has been conducted based on facies and petrophysical modeling and that demands to refine the role of reservoir properties. To tackle this problem, a reservoir model is to be estimated using various combinations of property modeling algorithms for discrete (facies) and continuous (petrophysical) properties. Chang 6 member consists of three main facies, i.e., channel, lobe main body, and lobe margin facies. The current research is aimed at comparing the applicability and competitiveness of various facies and petrophysical modeling methods. Further, well-log data was utilized to interpret unique facies and petrophysical models to better understand the reservoir architecture. Methods for facies modeling include indicator kriging, multiple-point geostatistics, surface-based method, and sequential indicator simulation. Overall, the indicator kriging method preserved the local variability and accuracy, but some facies are smoothed out. The surface-based method showed far better results by showing the ability to reproduce the geometry, extent, connectivity, and facies association. The multiple-point geostatistics (MPG) model accurately presented the facies profiles, contacts, geometry, and geomorphological features. Sequential indicator simulation (SIS) honored the facies spatial distribution and input statistical parameters. The porosity model built using sequential Gaussian simulation (SGS) showed low porosity (74% values <2%). Gaussian random function simulation (GRFS) models showed very low average porosity (8%-10%) and low permeability (less than 0.1 mD). These methods indicate that Chang 6 member is a typical unconventional tight sandstone reservoir with ultralow values of petrophysical properties.


2021 ◽  
Author(s):  
Jiru Guo ◽  
Zhiwen Deng ◽  
Junyong Zhang ◽  
Wei Tan ◽  
Guowen Chen ◽  
...  

Abstract The biogas lithologic reservoirs in Sanhu Area of the Qaidam Basin has a broad exploration prospect, however, the demands of structural implementation and reservoir prediction can hardly be met with the existing P-wave seismic data due to the thin thickness of single sandstone layers, the rapid lateral changes and the low prediction accuracy of lithologic reservoirs. The SH-wave data has a higher resolution ability in lithology prediction. I can better reflect the lateral change features of formations. Because few SH-wave logging data are available and they are in accurate in the current study area, the SH-wave velocity is estimated through petrophysical modeling and the calibration and horizon interpretation of the SH-wave data are realized combined with the P- and SH-wave matching technology. Through the inversion of S-wave data,the lithological distribution of formations are predicted in combination with the comrehensive analysis of P-wave data, which provides a favorable basis for the survey of lithologic gas reservoir in the research area and achieves a good good result. In this way,a set of reservoir prediction methods and processes suitable for the shallow biogas lithological exploration in the Sanhu Area have formed initially.


Author(s):  
Nazarov Qudratillo Bozorovich ◽  
Kholbekov Davronbek Nugmonbekovich ◽  
Jabborov Sardorjon Muzaffar Ogli ◽  
Khayitov Odiljon G'ofurovich

Sign in / Sign up

Export Citation Format

Share Document