Elastic‐wave reverse‐time migration with a wavefield‐separation imaging condition

Author(s):  
Huseyin Denli ◽  
Lianjie Huang
Geophysics ◽  
2017 ◽  
Vol 82 (2) ◽  
pp. S111-S127 ◽  
Author(s):  
Qizhen Du ◽  
ChengFeng Guo ◽  
Qiang Zhao ◽  
Xufei Gong ◽  
Chengxiang Wang ◽  
...  

The scalar images (PP, PS, SP, and SS) of elastic reverse time migration (ERTM) can be generated by applying an imaging condition as crosscorrelation of pure wave modes. In conventional ERTM, Helmholtz decomposition is commonly applied in wavefield separation, which leads to a polarity reversal problem in converted-wave images because of the opposite polarity distributions of the S-wavefields. Polarity reversal of the converted-wave image will cause destructive interference when stacking over multiple shots. Besides, in the 3D case, the curl calculation generates a vector S-wave, which makes it impossible to produce scalar PS, SP, and SS images with the crosscorrelation imaging condition. We evaluate a vector-based ERTM (VB-ERTM) method to address these problems. In VB-ERTM, an amplitude-preserved wavefield separation method based on decoupled elastic wave equation is exploited to obtain the pure wave modes. The output separated wavefields are both vectorial. To obtain the scalar images, the scalar imaging condition in which the scalar product of two vector wavefields with source-normalized illumination is exploited to produce scalar images instead of correlating Cartesian components or magnitude of the vector P- and S-wave modes. Compared with alternative methods for correcting the polarity reversal of PS and SP images, our ERTM solution is more stable and simple. Besides these four scalar images, the VB-ERTM method generates another PP-mode image by using the auxiliary stress wavefields. Several 2D and 3D numerical examples are evaluated to demonstrate the potential of our ERTM method.


2013 ◽  
Vol 868 ◽  
pp. 11-14
Author(s):  
Jia Jia Yang ◽  
Bing Shou He ◽  
Jian Zhong Zhang

Based on the elastic wave equation, high-order finite-difference schemes for reverse-time extrapolation in the space of staggered grid and the perfectly matched layer (PML) absorbing boundary condition for the equation are derived. Prestack reverse-time depth migration (RTM) of elastic wave equation using the excitation time imaging condition and normalized cross-correlation imaging condition is carried out. Numerical experiments show that reverse-time migration is not limited for the angle of incidence and dramatic changes in lateral velocity. The reverse-time migration results of normalized cross-correlation imaging condition give the better effect than that of excitation time imaging condition.


Geophysics ◽  
2018 ◽  
Vol 83 (6) ◽  
pp. S489-S503 ◽  
Author(s):  
Jidong Yang ◽  
Hejun Zhu ◽  
Wenlong Wang ◽  
Yang Zhao ◽  
Houzhu Zhang

In elastic reverse time migration (RTM), wavefield separation is an important step to remove crosstalk artifacts and improve imaging quality. State-of-the-art techniques for wavefield separation in isotropic elastic media include using the Helmholtz decomposition and introducing an auxiliary wave equation. Although these two approaches produce pure-mode vector wavefields with correct amplitudes, phases, and physical units, their computational costs are still high under current computational capability, especially for 3D large-scale problems. Based on the P- and S-wave dispersion relations, we have developed an efficient wavefield separation strategy for elastic RTM. Instead of solving a vector Poisson’s equation in the Helmholtz decomposition, we modify the phases of source wavelet as well as multicomponent records and scale the amplitudes of extrapolated wavefields with the squares of P- and S-wave velocities. This operation allows us to produce vector P- and S-wavefields with the same phases and amplitudes as the input coupled wavefields while significantly reducing computational costs. With the separated vector wavefields, we implemented a modified dot-product imaging condition for elastic RTM. In comparison with the previously proposed dot-product imaging condition, this modified imaging condition enables us to eliminate the effects of multiplication with a cosine function and hence produces migrated images with accurate amplitudes. Several 2D and 3D numerical examples are used to demonstrate the feasibility and robustness of our method for imaging complex subsurface structures.


Sign in / Sign up

Export Citation Format

Share Document