polarity reversal
Recently Published Documents


TOTAL DOCUMENTS

465
(FIVE YEARS 102)

H-INDEX

41
(FIVE YEARS 7)

2022 ◽  
Vol 577 ◽  
pp. 117195
Author(s):  
J. Almeida ◽  
N. Riel ◽  
F.M. Rosas ◽  
J.C. Duarte ◽  
W.P. Schellart

2022 ◽  
Vol 115 ◽  
pp. 103668
Author(s):  
Yunxiao Zhang ◽  
Yuanxiang Zhou ◽  
Ling Zhang ◽  
Chenyuan Teng ◽  
Xin Huang ◽  
...  

Author(s):  
Baolu Sun ◽  
Boris J. P. Kaus ◽  
Jianfeng Yang ◽  
Gang Lu ◽  
Xinxin Wang ◽  
...  

2021 ◽  
Vol 921 (2) ◽  
pp. 139
Author(s):  
Yun Li ◽  
Haoyu Lu ◽  
Jinbin Cao ◽  
Shibang Li ◽  
Christian Mazelle ◽  
...  

Abstract Without the intrinsic magnetic field, the solar wind interaction with Mars can be significantly different from the interaction with Earth and other magnetized planets. In this paper, we investigate how a global configuration of the magnetic structures, consisting of the bow shock, the induced magnetosphere, and the magnetotail, is modulated by the interplanetary magnetic field (IMF) orientation. A 3D multispecies numerical model is established to simulate the interaction of solar wind with Mars under different IMF directions. The results show that the shock size including the subsolar distance and the terminator radius increases with Parker spiral angle, as is the same case with the magnetotail radius. The location and shape of the polarity reversal layer and inverse polarity reversal layer in the induced magnetotail are displaced to the y < 0 sector for a nonzero flow-aligned IMF component, consistent with previous analytical solutions and observations. The responses of the Martian global magnetic configuration to the different IMF directions suggest that the external magnetic field plays an important role in the solar wind interaction with unmagnetized planets.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2746
Author(s):  
Minhee Kim ◽  
Se-Hee Lee

In an HVDC environment, space charge accumulated in polymeric insulators causes severe electric field distortion and degradation of breakdown strength. To analyze the breakdown characteristics, here, the space charge distribution was numerically evaluated using the bipolar charge transport (BCT) model, considering the temperature gradient inside the polymeric insulator. In particular, we proposed an electro-mechanical threshold energy condition, resulting in the modified molecular chain displacement model. The temperature gradient accelerates to reduce the breakdown strength with the polarity-reversal voltage, except during the harshest condition, when the temperature of the entire polymeric insulator was 70 °C. The energy imbalance inside the insulator caused by polarity-reversal voltage reduced the breakdown strength by 82%. Finally, this numerical analysis model can be used universally to predict the breakdown strength of polymeric insulators in various environments, and help in evaluating the electrical performance of polymeric insulators.


2021 ◽  
Vol 9 ◽  
Author(s):  
Qizhen Du ◽  
Xiaoyu Zhang ◽  
Shukui Zhang ◽  
Fuyuan Zhang ◽  
Li-Yun Fu

The scalar images (PP and PS) can be effectively obtained in vector-based elastic reverse time migration by applying dot product–based scalar imaging conditions to the separated vector wavefields. However, the PP image suffers from polarity reversal issues when opening angles are greater than 90∘ and backscattering artifacts when opening angles are close to 180∘. To address these issues, we propose the pseudo-Laplace filter for the dot product–based scalar imaging condition. Based on the analysis of the Laplace filter in the scalar image of vector-based wavefields, the second-order parallel-oriented partial derivatives of Cartesian components cross-correlation results are selected to construct the pseudo-Laplace filter. In contrast, second-order normal-oriented partial derivatives of the Cartesian component’s cross-correlation results are omitted. The theoretical analysis with the plane wave assumption shows that the proposed pseudo-Laplace filter can solve the problems of backscattering artifacts and polarity reversal in PP images by the scalar imaging condition. Due to additional polarity correction and backscattering attenuation, numerical examples show excellent performance in PP images with a pseudo-Laplace filter. Furthermore, the application of the pseudo-Laplace filter requires trivial additional computation or storage.


Sign in / Sign up

Export Citation Format

Share Document