Tomographic reconstructions of borehole sections using the radio imaging method at Pyhäsalmi massive sulfide deposit in Finland

Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. B217-B233
Author(s):  
Arto Korpisalo

We have used the radio imaging method (RIM) to delineate attenuating zones in two borehole sections in the area of the Pyhäsalmi volcanogenic massive sulfide (VMS) copper-zinc deposit located in central Finland. The frequency band (312.5–2500 kHz) is higher and thus provides better resolution and sensitivity to conductive targets than traditional ground-level and borehole electromagnetic (EM) methods. When EM waves are assumed to be propagated along straight rays, the simultaneous iterative reconstruction technique can be used and the decayed amplitudes of the electric field are converted to the attenuation coefficient in dB/m. The straight-ray assumption was, however, not met in this study. The reconstruction results of two borehole sections were compared with time-domain EM (TEM) data and electric logging data. Electric logging reveals the nearby conducive mineralizations, and when compared with RIM data, the continuation of attenuating formations can be better predicted. The intersections interpreted from the TEM data were consistent with the RIM data. However, continuation of the attenuating domains could only be established from RIM data. Low ray densities at the upper and lower edges, violation of the straight-ray assumption, and out-of-plane targets may generate artifacts. In addition, the constructions suffer from smearing in the direction of the raypath. According to the results, we can recover the shape and orientation of attenuating targets in the borehole sections, but the physical properties are underestimated due to the straight-ray assumption. The comparison studies confirmed that RIM is well-suited to estimating subsurface conductivity properties and to predicting the continuation of attenuating domains between the boreholes at the Pyhäsalmi VMS deposit.

1994 ◽  
Vol 37 (1) ◽  
Author(s):  
F. Maggio ◽  
F. Malfanti ◽  
M. Bertero ◽  
M. Cattaneo ◽  
C. Eva

In this paper we apply various inversion methods to a set of teleseismic data collected by a network operating along the Ligurian Belt in the transition region between Alps and Apennines. In particular, we consider the regularization method, the truncated singular value decomposition, the Landweber method (with the Related Simultaneous Iterative Reconstruction Technique) and the conjugate gradient method. All the methods provide rather similar velocity models which are well approximated by that provided by back-projection (used with an appropriate normalization constant). A drawback of these models seems to be the large discrepancy (of the order of 40%) between the observed time residuals and those computed from the model itself. However, for each station of the network, the azimuth dependence of the computed time residuals reproduces rather well the observed one so that it is believable that the most significant information contained in the data has been expIoited. The computed velocity models indicate strong heterogeneities in the first 200 km below the Apennines.


Sign in / Sign up

Export Citation Format

Share Document