landweber method
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 13)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Junjun Hu ◽  
Daijun Jiang

Abstract In this paper, we are concerned with the identification of the piecewise constant Robin coefficient in an elliptic equation. The iterative regularization method is one of the very effective methods for solving this kind of nonlinear ill-posed inverse problems. But it usually requires to solve numerous amounts of forward solutions during the iterative process, which will cost a lot of computational time in high-dimensional spaces. A reduced basis method is considered to reduce the computational time for solving the forward problems, and its error estimate is also studied. Finally, we propose a reduced basis Landweber algorithm to solve the elliptic inverse Robin problem and present several numerical experiments to demonstrate the accuracy and efficiency of the algorithm.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Le Nhat Huynh ◽  
Nguyen Hoang Luc ◽  
Dumitru Baleanu ◽  
Le Dinh Long

AbstractThis article is devoted to the study of the source function for the Caputo–Fabrizio time fractional diffusion equation. This new definition of the fractional derivative has no singularity. In other words, the new derivative has a smooth kernel. Here, we investigate the existence of the source term. Through an example, we show that this problem is ill-posed (in the sense of Hadamard), and the fractional Landweber method and the modified quasi-boundary value method are used to deal with this inverse problem and the regularized solution is also obtained. The convergence estimates are addressed for the regularized solution to the exact solution by using an a priori regularization parameter choice rule and an a posteriori parameter choice rule. In addition, we give a numerical example to illustrate the proposed method.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Nguyen Hoang Luc ◽  
Le Nhat Huynh ◽  
Donal O’Regan ◽  
Nguyen Huu Can

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Pallavi Mahale ◽  
Sharad Kumar Dixit

AbstractIn 2012, Jin Qinian considered an inexact Newton–Landweber iterative method for solving nonlinear ill-posed operator equations in the Banach space setting by making use of duality mapping. The method consists of two steps; the first one is an inner iteration which gives increments by using Landweber iteration, and the second one is an outer iteration which provides increments by using Newton iteration. He has proved a convergence result for the exact data case, and for the perturbed data case, a weak convergence result has been obtained under a Morozov type stopping rule. However, no error bound has been given. In 2013, Kaltenbacher and Tomba have considered the modified version of the Newton–Landweber iterations, in which the combination of the outer Newton loop with an iteratively regularized Landweber iteration has been used. The convergence rate result has been obtained under a Hölder type source condition. In this paper, we study the modified version of inexact Newton–Landweber iteration under the approximate source condition and will obtain an order-optimal error estimate under a suitable choice of stopping rules for the inner and outer iterations. We will also show that the results proved in this paper are more general as compared to the results proved by Kaltenbacher and Tomba in 2013. Also, we will give a numerical example of a parameter identification problem to support our method.


Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 608
Author(s):  
Pornsarp Pornsawad ◽  
Parada Sungcharoen ◽  
Christine Böckmann

In this paper, we present the convergence rate analysis of the modified Landweber method under logarithmic source condition for nonlinear ill-posed problems. The regularization parameter is chosen according to the discrepancy principle. The reconstructions of the shape of an unknown domain for an inverse potential problem by using the modified Landweber method are exhibited.


Sign in / Sign up

Export Citation Format

Share Document