A finite-difference iterative solver of the Helmholtz equation for frequency-domain seismic wave modeling and full waveform inversion
We present a finite difference iterative solver of the Helmholtz equation for seismic modeling and inversion in the frequency-domain. The iterative solver involves the shifted Laplacian operator and two-level pre-conditioners. It is based on the application of the pre-conditioners to the Krylov subspace stabilized biconjugate gradient method. A critical factor for the iterative solver is the introduction of a new pre-conditioner into the Krylov subspace iteration method to solve the linear system resulting from the discretization of the Helmholtz equation. This new pre-conditioner is based upon a reformulation of an integral equation-based convergent Born series for the Lippmann-Schwinger equation to an equivalent differential equation. We demonstrate that the proposed iterative solver combined with the novel pre-conditioner when incorporated with the finite difference method accelerates the convergence of the Krylov subspace iteration method for frequency-domain seismic wave modeling. A comparison of a direct solver, a one-level Krylov subspace iterative solver and the proposed two-level iterative solver verified the accuracy and accelerated convergence of the new scheme. Extensive tests in full waveform inversion demonstrate the solver applicability to full waveform inversion applications.