scholarly journals Evidence-based guidelines for protective actions and earthquake early warning systems

Geophysics ◽  
2021 ◽  
pp. 1-79
Author(s):  
Sara K. McBride ◽  
Hollie Smith ◽  
Meredith Morgoch ◽  
Danielle Sumy ◽  
Mariah Jenkins ◽  
...  

Earthquake early warning systems (EEW) are becoming increasingly available or in development throughout the world. With public alerting in Mexico, Japan, Taiwan, and parts of the United States, it is important to provide evidence-based recommendations for protective action so people can protect themselves when they receive an alert. Best-practice warning communication research suggests that providing a protective action will increase the efficacy of the message. However, given the diversity of earthquakes and building types, as well as social and cultural contexts where these systems exist, the question is: what is the best protective action to recommend? The answer lies in maximizing life-saving protective actions during an earthquake event requires both contextually relevant messaging and widespread public education about appropriate protective actions under a range of conditions. By researching previous earthquake injury literature, examining current best practices and public education campaigns, key protective actions may be determined and used to increase the life-saving potential of earthquake early warning systems.

Author(s):  
Mark Netanel ◽  
Andreas Samuel Eisermann ◽  
Alon Ziv

ABSTRACT Regional source-based earthquake early warning systems perform three consecutive tasks: (1) detection and epicenter location, (2) magnitude determination, and (3) ground-motion prediction. The correctness of the magnitude determination is contingent on that of the epicenter location, and the credibility of the ground-motion prediction depends on those of the epicenter location and the magnitude determination. Thus, robust epicenter location scheme is key for regional earthquake early warning systems. Available source-based systems yield acceptably accurate locations when the earthquakes occur inside the real-time seismic network, but they return erroneous results otherwise. In this study, a real-time algorithm that is intended as a supplement to an existing regional earthquake early warning systems is introduced with the sole objective of ameliorating its off-network location capacity. The new algorithm combines measurements from three or more network stations that are analyzed jointly using an array methodology to give the P-wave slowness vector and S-phase arrival time. Prior to the S-phase picking, the nonarrival of the S phase is used for determining a minimum epicentral distance. This estimate is updated repeatedly with elapsed time until the S phase is picked. Thus, the system timeliness is not compromised by waiting for the S-phase arrival. After the S wave is picked, an epicentral location can be determined using a single array by intersecting the back-azimuth beam with the S-minus-P annulus. When several arrays are assembled, the back azimuth and P and S picks from all arrays are combined to constrain the epicenter. The performance of the array processing for back azimuth and S-wave picking is assessed using a large number of accelerograms, recorded by nine strong motion sensors of the KiK-net seismic network in Japan. The nine stations are treated as three distinct seismic arrays, comprising three stations each. Good agreement is found between array-based and catalog-reported parameters. Finally, the advantage of the new array methodology with respect to alternative schemes for back azimuth and distance is demonstrated.


2017 ◽  
Vol 89 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Gaetano Festa ◽  
Matteo Picozzi ◽  
Alessandro Caruso ◽  
Simona Colombelli ◽  
Marco Cattaneo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document