Pressure behavior of shale-gas flow in dual porous medium based on fractal theory

2018 ◽  
Vol 6 (4) ◽  
pp. SN1-SN10 ◽  
Author(s):  
Peiqing Lian ◽  
Taizhong Duan ◽  
Rui Xu ◽  
Linlin Li ◽  
Meng Li

The shale gas reservoir is a complex subject with a multiscale nanopore and fracture system, and the gas flow mechanism indicates an evident difference from the conventional gas reservoir. We have introduced fractal theory to characterize the multiscale distribution of pores and fractures, and we have developed a single-phase radial flow model considering nonequilibrium adsorption to describe the flow characteristics in the shale gas reservoir. The numerical solution of the flow model in Euclidean space is obtained by inversing the analytical solution derived in Laplace space through the Stehfest numerical inversion method, and the log-log curve of the dimensionless bottom-hole pressure (BHP) and its derivative versus dimensionless time are analyzed. The log-log curve of the dimensionless BHP has two distinct straight-line segments: The unit slope line reflects early well-storage effect, and the straight line with slope [Formula: see text] reflects reservoir fractal characteristics. The slope of the straight line will become smaller with the increasing fractal dimension. The adsorption coefficient mainly affects the middle and late period of the log-log curves, and more shale gas will desorb from the matrix with the increasing adsorption coefficient. The wellbore storage coefficient has a significant negative correlation with dimensionless BHP especially at the early and transitional stages. The skin factor mainly affects the transition section; a smaller skin factor generally leads to the earlier appearance of the transition section. In addition, a smaller interporosity flow coefficient also results in an earlier transition stage appearance. The lower storativity ratio means a higher dimensionless BHP and an earlier appearance of the transition stage.

2014 ◽  
Author(s):  
Y. Li ◽  
X. Li ◽  
J. Shi ◽  
H. Wang ◽  
L. Wu ◽  
...  

2013 ◽  
Author(s):  
Chaohua Guo ◽  
Baojun Bai ◽  
Mingzhen Wei ◽  
Xiaoming He ◽  
Yu-Shu Wu

Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Cheng Dai ◽  
Liang Xue ◽  
Weihong Wang ◽  
Xiang Li

Due to the ultralow permeability of shale gas reservoirs, stimulating the reservoir formation by using hydraulic fracturing technique and horizontal well is required to create the pathway of gas flow so that the shale gas can be recovered in an economically viable manner. The hydraulic fractured formations can be divided into two regions, stimulated reservoir volume (SRV) region and non-SRV region, and the produced shale gas may exist as free gas or adsorbed gas under the initial formation condition. Investigating the recovery factor of different types of shale gas in different region may assist us to make more reasonable development strategies. In this paper, we build a numerical simulation model, which has the ability to take the unique shale gas flow mechanisms into account, to quantitatively describe the gas production characteristics in each region based on the field data collected from a shale gas reservoir in Sichuan Basin in China. The contribution of the free gas and adsorbed gas to the total production is analyzed dynamically through the entire life of the shale gas production by adopting a component subdivision method. The effects of the key reservoir properties, such as shale matrix, secondary natural fracture network, and primary hydraulic fractures, on the recovery factor are also investigated.


2012 ◽  
Author(s):  
Chen Mingzhong ◽  
Qian Bing ◽  
Ou Zhilin ◽  
Zhang juncheng ◽  
Jiang Hai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document