free gas
Recently Published Documents


TOTAL DOCUMENTS

516
(FIVE YEARS 117)

H-INDEX

39
(FIVE YEARS 5)

Author(s):  
Iván Vargas-Cordero ◽  
Michela Giustiniani ◽  
Umberta Tinivella ◽  
Lucia Villar-Muñoz ◽  
Giulia Alessandrini

2021 ◽  
Author(s):  
Fernando Bermudez ◽  
Noor Al Nahhas ◽  
Hafsa Yazdani ◽  
Michael LeTan ◽  
Mohammed Shono

Abstract The objectives and Scope is to evaluate the feasibility of a Production Maximization algorithm for ESPs on unconventional wells using projected operating conditions instead of current ones, which authors expect will be crucial in adjusting the well deliverability to optimum frequencies on the rapidly changing conditions of tight oil wells. Actual production data for an unconventional well was used, covering from the start of Natural Flow production up to 120 days afterwards. Simulating what the production would be if a VFD running on IMP Optimization algorithms had been installed, new values for well flowing pressures were calculated, daily production scenarios were evaluated, and recommended operating frequencies were plotted. Result, observations, and conclusions: A. Using the Intelligent Maximum Production (IMP) algorithm allows maximum production from tight oil wells during the initial high production stage, and the prevention of gas-locking at later stages when gas production increases. B. The adjustment of frequency at later stages for GOR wells is key to maintaining maximum production while controlling free gas at the intake when compared against controlling the surface choke. Novel/additive information: The use of Electrical Submersible Pumps for the production of unconventional wells paired with the use of a VFD and properly designed control algorithms allows faster recovery of investment by pumping maximum allowable daily rates while constraining detrimental conditions such as free gas at the intake.


2021 ◽  
Author(s):  
Shubhangi Gupta ◽  
Christopher Schmidt ◽  
Christoph Böttner ◽  
Lars Helmuth Rüpke ◽  
Ebbe H Hartz
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Iván de la Cruz Vargas-Cordero ◽  
Lucia Villar-Muñoz ◽  
Umberta Tinivella ◽  
Michela Giustiniani ◽  
Nathan Bangs ◽  
...  

AbstractThe Central-South Chile margin is an excellent site to address the changes in the gas hydrate system since the last deglaciation associated with tectonic uplift and great earthquakes. However, the dynamic of the gas hydrate/free gas system along south central Chile is currently not well understood. From geophysical data and modeling analyses, we evaluate gas hydrate/free gas concentrations along a seismic line, derive geothermal gradients, and model past positions of the Bottom Simulating Reflector (BSR; until 13,000 years BP). The results reveal high hydrate/free gas concentrations and local geothermal gradient anomalies related to fluid migration through faults linked to seafloor mud volcanoes. The BSR-derived geothermal gradient, the base of free gas layers, BSR distribution and models of the paleo-BSR form a basis to evaluate the origin of the gas. If paleo-BSR coincides with the base of the free gas, the gas presence can be related to the gas hydrate dissociation due to climate change and geological evolution. Only if the base of free gas reflector is deeper than the paleo-BSR, a deeper gas supply can be invoked.


Author(s):  
Thuy Chu ◽  
Tan C. Nguyen ◽  
Jihoon Wang ◽  
Duc Vuong

AbstractElectrical Submersible Pump (ESP) is one of the major Artificial Lift methods that is reliable and effective for pumping high volume of fluids from wellbores. However, ESP is not recommended for applications with high gas liquid ratio. The presence of free gas inside the pump causes pump performance degradation which may lead to problems or even failure during operations. Thus, it is important to investigate effect of free gas on ESP performance under downhole conditions. At present, existing models or correlations are based on/verified with experimental data. This study is one of the first attempts to develop correlations for predicting two-phase gas–liquid pump performance under downhole conditions by using field data and laboratory data. Field data from three oil producing wells provided by Strata Production Company and Perdure Petroleum LLC. as well as experimental data obtained from experimental facility at Production and Drilling Research Project—New Mexico Tech were used in this study. Actual two-phase pump differential pressure per stage is obtained from experiments or estimated from field data and was normalized using pump performance curve. The values are compared to pump performance curve to study the relationships between pump performance and free gas percentage at pump intake. Correlations to predict ESP performance in two-phase flow under downhole and experimental conditions was derived from the results using regression technique. The correlation developed from field data presented in this study can be used to predict two-phase ESP performance under downhole conditions and under high gas fraction. The results from the experimental data confirm the reliability of the developed correlation using field data to predict two-phase ESP performance under downhole conditions. The developed correlation using the laboratory data predicts quite well the two-phase pump performance at the gas fraction of less than 15% while it is no longer reliable when free gas fraction is more than 15%. The findings from this study will help operating companies as well as ESP manufacturers to operate ESPs within the recommended range under downhole conditions. However, it is recommended to use the proposed correlation on reservoirs with conditions similar to those of the three presented wells.


2021 ◽  
Author(s):  
◽  
Hanyan Wang

<p>Reprocessed Bruin 2D seismic data (recorded in 2006) from New Zealand Hikurangi Margin are presented and analyzed to show the presence of gas hydrates. We choose six seismic lines that each showed bottom-simulating reflections (BSRs) that are important indicators for the presence of gas hydrate. The aim is to obtain a higher resolution image of the shallow subsurface structures and determine the nature of the gas hydrate system in this area.  To further investigate the presence of Gas Hydrates was undertaken. There is a strong correlation between anomalous velocities and the depths of BSRs, which supports the presence of gas hydrates in the research area and is useful for detecting areas of both free gas and gas hydrate along the seismic lines.  The combination of high-resolution seismic imaging and velocity analysis is the key method for showing the distribution of gas hydrates and gas pockets in our research area. The results indicate that the distribution of both free gas and gas hydrate is strongly localized. The Discussion Chapter gives several concentrated gas hydrate deposits in the research area. Idealized scenarios for the formation of the gas hydrates are proposed. In terms of identifying concentrated gas hydrate deposits we propose the identification of the following key seismic attributes: 1) existence of BSRs, 2) strong reflections above BSRs in the gas hydrate stability zone, 3) enhanced reflections related to free gas below BSRs, 4) appropriate velocity anomalies (i.e. low velocity zones beneath BSRs and localized high-velocity zones above BSRs).  This study contributes to the understanding of the geological conditions and processes that drives the deposition of concentrated gas hydrate deposits on this part of the Hikurangi Margin.</p>


2021 ◽  
Author(s):  
◽  
Hanyan Wang

<p>Reprocessed Bruin 2D seismic data (recorded in 2006) from New Zealand Hikurangi Margin are presented and analyzed to show the presence of gas hydrates. We choose six seismic lines that each showed bottom-simulating reflections (BSRs) that are important indicators for the presence of gas hydrate. The aim is to obtain a higher resolution image of the shallow subsurface structures and determine the nature of the gas hydrate system in this area.  To further investigate the presence of Gas Hydrates was undertaken. There is a strong correlation between anomalous velocities and the depths of BSRs, which supports the presence of gas hydrates in the research area and is useful for detecting areas of both free gas and gas hydrate along the seismic lines.  The combination of high-resolution seismic imaging and velocity analysis is the key method for showing the distribution of gas hydrates and gas pockets in our research area. The results indicate that the distribution of both free gas and gas hydrate is strongly localized. The Discussion Chapter gives several concentrated gas hydrate deposits in the research area. Idealized scenarios for the formation of the gas hydrates are proposed. In terms of identifying concentrated gas hydrate deposits we propose the identification of the following key seismic attributes: 1) existence of BSRs, 2) strong reflections above BSRs in the gas hydrate stability zone, 3) enhanced reflections related to free gas below BSRs, 4) appropriate velocity anomalies (i.e. low velocity zones beneath BSRs and localized high-velocity zones above BSRs).  This study contributes to the understanding of the geological conditions and processes that drives the deposition of concentrated gas hydrate deposits on this part of the Hikurangi Margin.</p>


Sign in / Sign up

Export Citation Format

Share Document