scholarly journals Optimization of the shale gas reservoir fracture parameters based on the fully coupled gas flow and effective stress model

Author(s):  
Diquan Li ◽  
Yuhua Wang ◽  
Bo Zeng ◽  
Qiao Lyu ◽  
Xiaojin Zhou ◽  
...  
Author(s):  
Yingzhong Yuan ◽  
Wende Yan ◽  
Fengbo Chen ◽  
Jiqiang Li ◽  
Qianhua Xiao ◽  
...  

AbstractComplex fracture systems including natural fractures and hydraulic fractures exist in shale gas reservoir with fractured horizontal well development. The flow of shale gas is a multi-scale flow process from microscopic nanometer pores to macroscopic large fractures. Due to the complexity of seepage mechanism and fracture parameters, it is difficult to realize fine numerical simulation for fractured horizontal wells in shale gas reservoirs. Mechanisms of adsorption–desorption on the surface of shale pores, slippage and Knudsen diffusion in the nanometer pores, Darcy and non-Darcy seepage in the matrix block and fractures are considered comprehensively in this paper. Through fine description of the complex fracture systems after horizontal well fracturing in shale gas reservoir, the problems of conventional corner point grids which are inflexible, directional, difficult to geometrically discretize arbitrarily oriented fractures are overcome. Discrete fracture network model based on unstructured perpendicular bisection grids is built in the numerical simulation. The results indicate that the discrete fracture network model can accurately describe fracture parameters including length, azimuth and density, and that the influences of fracture parameters on development effect of fractured horizontal well can be finely simulated. Cumulative production rate of shale gas is positively related to fracture half-length, fracture segments and fracture conductivity. When total fracture length is constant, fracturing effect is better if single fracture half-length or penetration ratio is relatively large and fracturing segments are moderate. Research results provide theoretical support for optimal design of fractured horizontal well in shale gas reservoir.


2018 ◽  
Vol 6 (4) ◽  
pp. SN1-SN10 ◽  
Author(s):  
Peiqing Lian ◽  
Taizhong Duan ◽  
Rui Xu ◽  
Linlin Li ◽  
Meng Li

The shale gas reservoir is a complex subject with a multiscale nanopore and fracture system, and the gas flow mechanism indicates an evident difference from the conventional gas reservoir. We have introduced fractal theory to characterize the multiscale distribution of pores and fractures, and we have developed a single-phase radial flow model considering nonequilibrium adsorption to describe the flow characteristics in the shale gas reservoir. The numerical solution of the flow model in Euclidean space is obtained by inversing the analytical solution derived in Laplace space through the Stehfest numerical inversion method, and the log-log curve of the dimensionless bottom-hole pressure (BHP) and its derivative versus dimensionless time are analyzed. The log-log curve of the dimensionless BHP has two distinct straight-line segments: The unit slope line reflects early well-storage effect, and the straight line with slope [Formula: see text] reflects reservoir fractal characteristics. The slope of the straight line will become smaller with the increasing fractal dimension. The adsorption coefficient mainly affects the middle and late period of the log-log curves, and more shale gas will desorb from the matrix with the increasing adsorption coefficient. The wellbore storage coefficient has a significant negative correlation with dimensionless BHP especially at the early and transitional stages. The skin factor mainly affects the transition section; a smaller skin factor generally leads to the earlier appearance of the transition section. In addition, a smaller interporosity flow coefficient also results in an earlier transition stage appearance. The lower storativity ratio means a higher dimensionless BHP and an earlier appearance of the transition stage.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Hyeonsu Shin ◽  
Viet Nguyen-Le ◽  
Min Kim ◽  
Hyundon Shin ◽  
Edward Little

This study developed a production-forecasting model to replace the numerical simulation and the decline curve analysis using reservoir and hydraulic fracture data in Montney shale gas reservoir, Canada. A shale-gas production curve can be generated if some of the decline parameters such as a peak rate, a decline rate, and a decline exponent are properly estimated based on reservoir and hydraulic fracturing parameters. The production-forecasting model was developed to estimate five decline parameters of a modified hyperbolic decline by using significant reservoir and hydraulic fracture parameters which are derived through the simulation experiments designed by design of experiments and statistical analysis: (1) initial peak rate ( P hyp ), (2) hyperbolic decline rate ( D hyp ), (3) hyperbolic decline exponent ( b hyp ), (4) transition time ( T transition ), and (5) exponential decline rate ( D exp ). Total eight reservoir and hydraulic fracture parameters were selected as significant parameters on five decline parameters from the results of multivariate analysis of variance among 11 reservoir and hydraulic fracture parameters. The models based on the significant parameters had high predicted R 2 values on the cumulative production. The validation results on the 1-, 5-, 10-, and 30-year cumulative production data obtained by the simulation showed a good agreement: R 2 > 0.89 . The developed production-forecasting model can be also applied for the history matching. The mean absolute percentage error on history matching was 5.28% and 6.23% for the forecasting model and numerical simulator, respectively. Therefore, the results from this study can be applied to substitute numerical simulations for the shale reservoirs which have similar properties with the Montney shale gas reservoir.


2013 ◽  
Author(s):  
Chaohua Guo ◽  
Baojun Bai ◽  
Mingzhen Wei ◽  
Xiaoming He ◽  
Yu-Shu Wu

2014 ◽  
Author(s):  
Y. Li ◽  
X. Li ◽  
J. Shi ◽  
H. Wang ◽  
L. Wu ◽  
...  

Author(s):  
Abdul Majeed Shar ◽  
Waheed Ali Abro ◽  
Aftab Ahmed Mahesar ◽  
Kun Sang Lee

The production from shale gas reservoirs has significantly increased due to technological advancements. The shale gas reservoirs are very heterogeneous and the heterogeneity has a significant effect on the quality and productivity of reservoirs. Hence, it is essential to study the behavior of such reservoirs for accurate modelling and performance prediction. To evaluate the impact of fracture parameters on shale gas reservoir productivity using CMG (Computer Modelling Group) stars simulation software was the main objective of this study. In this paper, a comprehensive analysis considering an example shale gas reservoir was conducted for production performance analysis considering uniform and non-uniform fractures configurations. Several simulations were performed by considering the multi-stage hydraulically fractured reservoir. The sensitivities conducted includes the different cases of moderate and severe heterogeneity along with variable fractures half-length, effect of changing fracture spacing, variable fracture conductivities. The simulation results showed that by increasing conductivity of fracture increases the gas production rate significantly. Moreover, cases of reservoir permeability heterogeneity were analyzed which show the significant effect on gas rate and on cumulative gas production. The results of this study can be used to improve the effectiveness in designing and developing of shale gas reservoirs and also to improve the accuracy of analyzing heterogeneous shale gas reservoir performance.


Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Cheng Dai ◽  
Liang Xue ◽  
Weihong Wang ◽  
Xiang Li

Due to the ultralow permeability of shale gas reservoirs, stimulating the reservoir formation by using hydraulic fracturing technique and horizontal well is required to create the pathway of gas flow so that the shale gas can be recovered in an economically viable manner. The hydraulic fractured formations can be divided into two regions, stimulated reservoir volume (SRV) region and non-SRV region, and the produced shale gas may exist as free gas or adsorbed gas under the initial formation condition. Investigating the recovery factor of different types of shale gas in different region may assist us to make more reasonable development strategies. In this paper, we build a numerical simulation model, which has the ability to take the unique shale gas flow mechanisms into account, to quantitatively describe the gas production characteristics in each region based on the field data collected from a shale gas reservoir in Sichuan Basin in China. The contribution of the free gas and adsorbed gas to the total production is analyzed dynamically through the entire life of the shale gas production by adopting a component subdivision method. The effects of the key reservoir properties, such as shale matrix, secondary natural fracture network, and primary hydraulic fractures, on the recovery factor are also investigated.


Sign in / Sign up

Export Citation Format

Share Document