scholarly journals Improving microseismic event location accuracy with head wave arrival time: Case study using Marcellus shale

Author(s):  
Zhishuai Zhang* ◽  
James W. Rector ◽  
Michael J. Nava
Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. KS1-KS10 ◽  
Author(s):  
Zhishuai Zhang ◽  
James W. Rector ◽  
Michael J. Nava

We have studied microseismic data acquired from a geophone array deployed in the horizontal section of a well drilled in the Marcellus Shale near Susquehanna County, Pennsylvania. Head waves were used to improve event location accuracy as a substitution for the traditional P-wave polarization method. We identified that resonances due to poor geophone-to-borehole coupling hinder arrival-time picking and contaminate the microseismic data spectrum. The traditional method had substantially greater uncertainty in our data due to the large uncertainty in P-wave polarization direction estimation. We also identified the existence of prominent head waves in some of the data. These head waves are refractions from the interface between the Marcellus Shale and the underlying Onondaga Formation. The source location accuracy of the microseismic events can be significantly improved by using the P-, S-wave direct arrival times and the head wave arrival times. Based on the improvement, we have developed a new acquisition geometry and strategy that uses head waves to improve event location accuracy and reduce acquisition cost in situations such as the one encountered in our study.


2017 ◽  
Author(s):  
Nidhal Belayouni ◽  
David Katz ◽  
Vladimir Grechka ◽  
Pete Christianson

Sign in / Sign up

Export Citation Format

Share Document