marcellus shale
Recently Published Documents


TOTAL DOCUMENTS

745
(FIVE YEARS 154)

H-INDEX

48
(FIVE YEARS 4)

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 43
Author(s):  
Wardana Saputra ◽  
Wissem Kirati ◽  
Tadeusz Patzek

We adopt a physics-guided, data-driven method to predict the most likely future production from the largest tight oil and gas deposits in North America, the Permian Basin. We first divide the existing 53,708 horizontal hydrofractured wells into 36 spatiotemporal well cohorts based on different reservoir qualities and completion date intervals. For each cohort, we fit the Generalized Extreme Value (GEV) statistics to the annual production and calculate the means to construct historical well prototypes. Using the physical scaling method, we extrapolate these well prototypes for several more decades. Our hybrid, physico-statistical prototypes are robust enough to history-match the entire production of the Permian mudstone formations. Next, we calculate the infill potential of each sub-region of the Permian and schedule the likely future drilling programs. To evaluate the profitability of each infill scenario, we conduct a robust economic analysis. We estimate that the Permian tight reservoirs contain 54–62 billion bbl of oil and 246–285 trillion scf of natural gas. With time, Permian is poised to be not only the most important tight oil producer in the U.S., but also the most important tight gas producer, surpassing the giant Marcellus shale play.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8438
Author(s):  
Tomasz Blach ◽  
Andrzej P. Radlinski ◽  
Phung Vu ◽  
Yeping Ji ◽  
Liliana de Campo ◽  
...  

The accessibility of pores to methane has been investigated in Devonian New Albany Shale Formation early-mature (Ro = 0.50%) to post-mature (Ro = 1.40%) samples. A Marcellus Shale Formation sample was included to expand the maturation range to Ro 2.50%. These are organic matter-rich rocks with total organic carbon (TOC) values of 3.4 to 14.4% and porosity values of 2.19 to 6.88%. Contrast matching small-angle neutron scattering (SANS) and ultra-small angle neutron scattering (USANS) techniques were used to generate porosity-related data before and after pressure cycling under hydrostatic (in a vacuum and at 500 bar of deuterated methane) and uniaxial stress (0 to ca. 350 bar) conditions. Our results showed that the accessible porosity was small for the samples studied, ranging from zero to 2.9%. No correlation between the accessible porosity and TOC or mineralogical composition was revealed, and the most likely explanation for porosity variation was related to the thermal transformation of organic matter and hydrocarbon generation. Pressure caused improvements in accessible porosity for most samples, except the oil window sample (Ro = 0.84%). Our data show that densification of methane occurs in nanopores, generally starting at diameters smaller than 20 nm, and that the distribution of methane density is affected by pressure cycling.


Author(s):  
Nizette Consolazio ◽  
J. Alexandra Hakala ◽  
Gregory V. Lowry ◽  
Athanasios K. Karamalidis

2021 ◽  
Vol 9 ◽  
Author(s):  
Brennan Ferguson ◽  
Vikas Agrawal ◽  
Shikha Sharma ◽  
J. Alexandra Hakala ◽  
Wei Xiong

Natural gas extracted from tight shale formations, such as the Marcellus Shale, represents a significant and developing front in energy exploration. By fracturing these formations using pressurized fracturing fluid, previously unobtainable hydrocarbon reserves may be tapped. While pursuing this resource, hydraulic fracturing operations leave chemically complex fluids in the shale formation for at least two weeks. This provides a substantial opportunity for the hydraulic fracturing fluid (HFF) to react with the shale formation at reservoir temperature and pressure. In this study, we investigated the effects of the carbonates on shale-HFF reactions with a focus on the Marcellus Shale. We performed autoclave experiments at high temperature and pressure reservoir conditions using a carbonate-rich and a decarbonated or carbonate-free version of the same shale sample. We observed that carbonate minerals buffer the pH of the solution, which in turn prevents clay dissolution. Carbonate and bicarbonate ions also scavenge reactive oxidizing species (ROS), which prevents oxidation of shale organic matter and volatile organic compounds (VOCs). Carbonate-free samples also show higher pyrite dissolution compared to the carbonate-rich sample due to chelation reactions. This study demonstrates how carbonate minerals (keeping all other variables constant) affect shale-HFF reactions that can potentially impact porosity, microfracture integrity, and the release of heavy metals and volatile organic contaminants in the produced water.


ACS Omega ◽  
2021 ◽  
Author(s):  
Sameer Al-Hajri ◽  
Berihun M. Negash ◽  
Md Motiur Rahman ◽  
Mohammed Haroun ◽  
Tareq M. Al-Shami

2021 ◽  
Author(s):  
Aymen Alhemdi ◽  
Ming Gu

Abstract Slickwater-sand fracturing design is widely employed in Marcellus shale. The slickwater- sand creates long skinny fractures and maximizes the stimulated reservoir volume (SRV). However, due to the fast settling of sand in the water, lots of upper and deeper areas are not sufficiently propped. Reducing sand size can lead to insufficient fracture conductivity. This study proposes to use three candidate ultra-lightweight proppants ULWPs to enhance the fractured well performance in unconventional reservoirs. In step 1, the current sand pumping design is input into an in-house P3D fracture propagation simulator to estimate the fracture geometry and proppant concentrations. Next, the distribution of proppant concentration converts to conductivity and then to fracture permeability. In the third step, the fracture permeability from the second step is input into a reservoir simulator to predict the cumulative production for history matching and calibration. In step 4, the three ULWPs are used to replace the sand in the frac simulator to get new frac geometry and conductivity distribution and then import them in reservoir model for production evaluation. Before this study, the three ULWPs have already been tested in the lab to obtain their long-term conductivities under in-situ stress conditions. The conductivity distribution and production performance are analyzed and investigated. The induced fracture size and location of the produced layer for the current target well play a fundamental effect on ultra-light proppant productivity. The average conductivity of ULWPs with mesh 40/70 is larger and symmetric along the fracture except for a few places. However, ULWPs with mesh 100 generates low average conductivity and create a peak conductivity in limited areas. The ULW-3 tends to have less cumulative production compared with the other ULWPs. For this Marcellus Shale study, the advantages of ultra-lightweight proppant are restricted and reduced because the upward fracture height growth is enormous. And with the presence of the hydrocarbon layer is at the bottom of the fracture, making a large proportion of ULWPs occupies areas that are not productive places. The current study provides a guidance for operators in Marcellus Shale to determine (1) If the ULWP can benefit the current shale well treated by sand, (2) what type of ULWP should be used, and (3) given a certain type of ULWP, what is the optimum pumping schedule and staging/perforating design to maximize the well productivity. The similar workflow can be expanded to evaluate the economic potential of different ULWPs in any other unconventional field.


Sign in / Sign up

Export Citation Format

Share Document