scholarly journals STATIC OUTPUT FEEDBACK DESIGN USING MODEL REDUCTION METHODS FOR SECOND-ORDER SYSTEMS

2020 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Yuhao Cong ◽  
◽  
Zheng Wang ◽  
2009 ◽  
Vol 2009 ◽  
pp. 1-7 ◽  
Author(s):  
Selma Ben Attia ◽  
Salah Salhi ◽  
Mekki Ksouri

This paper concerns static output feedback design of discrete-time linear switched system using switched Lyapunov functions (SLFs). A new characterization of stability for the switched system under arbitrary switching is first given together with -performance evaluation. The various conditions are given through a family of LMIs (Linear Matrix Inequalities) parameterized by a scalar variable which offers an additional degree of freedom, enabling, at the expense of a relatively small degree of complexity in the numerical treatment (one line search), to provide better results compared to previous one. The control is defined as a switched static output feedback which guarantees stability and -performance for the closed-loop system. A numerical example is presented to illustrate the effectiveness of the proposed conditions.


2018 ◽  
Vol 18 (01) ◽  
pp. 1850012 ◽  
Author(s):  
Jiafan Zhang ◽  
Yongxin Yuan ◽  
Hao Liu

This paper addresses the problem of the partial eigenvalue assignment for second-order damped vibration systems by static output feedback. The presented method uses the combined acceleration, velocity and displacement output feedback and works directly on second-order system models without the knowledge of the unassigned eigenpairs. It allows the input and output matrices to be prescribed beforehand in a simple form. The real-valued spectral decomposition of the symmetric quadratic pencil is adopted to derive a homogeneous matrix equation of output feedback gain matrices that assure the no spillover eigenvalue assignment. The method is validated by some illustrative numerical examples.


Sign in / Sign up

Export Citation Format

Share Document