Developmental Genetics in Lower Plants

2001 ◽  
pp. 825-842
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiaoming Song ◽  
Qihang Yang ◽  
Yun Bai ◽  
Ke Gong ◽  
Tong Wu ◽  
...  

AbstractSimple sequence repeats (SSRs) are one of the most important genetic markers and widely exist in most species. Here, we identified 249,822 SSRs from 3,951,919 genes in 112 plants. Then, we conducted a comprehensive analysis of these SSRs and constructed a plant SSR database (PSSRD). Interestingly, more SSRs were found in lower plants than in higher plants, showing that lower plants needed to adapt to early extreme environments. Four specific enriched functional terms in the lower plant Chlamydomonas reinhardtii were detected when it was compared with seven other higher plants. In addition, Guanylate_cyc existed in more genes of lower plants than of higher plants. In our PSSRD, we constructed an interactive plotting function in the chart interface, and users can easily view the detailed information of SSRs. All SSR information, including sequences, primers, and annotations, can be downloaded from our database. Moreover, we developed Web SSR Finder and Batch SSR Finder tools, which can be easily used for identifying SSRs. Our database was developed using PHP, HTML, JavaScript, and MySQL, which are freely available at http://www.pssrd.info/. We conducted an analysis of the Myb gene families and flowering genes as two applications of the PSSRD. Further analysis indicated that whole-genome duplication and whole-genome triplication played a major role in the expansion of the Myb gene families. These SSR markers in our database will greatly facilitate comparative genomics and functional genomics studies in the future.


1977 ◽  
Vol 29 (1) ◽  
pp. 55-63 ◽  
Author(s):  
R. T. M. Poulter ◽  
N. K. Honey

SUMMARYThe homothallic amoebal clones of Physarum polycephalum are of potential use in understanding the developmental genetics of this organism. Such an application requires that complementation and recombination analysis be possible between pairs of homothallic clones. This paper is a report of the formation of mixed plasmodia by pairs of homothallic amoebal clones. In order to detect such mixed plasmodia use was made of two marker genes involved in plasmodial fusion, fusA and fusB. Sporulation of a mixed plasmodium formed from two homothallic (delayed) amoebal clones yielded progeny amoebae which were genetically recombinant. It is deduced from the ratios of various genotypes in these progeny clones that the mixed plasmodium was diploid and that meiosis was associated with sporulation. There is therefore no impediment to the use of the homothallic strains for genetical analysis. The progeny amoebal clones were observed to be showing segregation for the characters homothallic (rapid) and homothallic (delayed). This observation, taken together with other related observations, suggests that the homothallic (delayed) character is produced by mutation of the homothallic (rapid) character. The rare plasmodia formed by a homothallic (delayed) amoebal clone are the result of reversion of this mutation. Amoebal clones of the homothallic (delayed) type are therefore developmental mutants unable to perform the differentiation from amoeba to plasmodium.


Genetics ◽  
2014 ◽  
Vol 197 (1) ◽  
pp. 49-59 ◽  
Author(s):  
Sarah Abdul-Wajid ◽  
Michael T. Veeman ◽  
Shota Chiba ◽  
Thomas L. Turner ◽  
William C. Smith

1998 ◽  
Vol 9 (4) ◽  
pp. 369-398 ◽  
Author(s):  
K.M. Weiss ◽  
D.W. Stock ◽  
Z. Zhao

The mammalian dentition is a segmental, or periodically arranged, organ system whose components are arrayed in specific number and in regionally differentiated locations along the linear axes of the jaws. This arrangement evolved from simpler dentitions comprised of many single-cusp teeth of relatively indeterminate number. The different types of mammalian teeth have subsequently evolved as largely independent units. The experimentally documented developmental autonomy of dental primordia shows that the basic dental pattern is established early in embryogenesis. An understanding of how genetic patterning processes may work must be consistent with the different modes of development, and partially independent evolution, of the upper and lower dentition in mammals. The periodic nature of the location, number, and morphological structure of teeth suggests that processes involving the quantitative interaction of diffusible signaling factors may be involved. Several extracellular signaling molecules and their interactions have been identified that may be responsible for locating teeth along the jaws and for the formation of the incisor field. Similarly, the wavelike expression of signaling factors within developing teeth suggests that dynamic interactions among those factors may be responsible for crown patterns. These factors seem to be similar among different tooth types, but the extent to which crown differences can be explained strictly in terms of variation in the parameters of interactions among the same genes, as opposed to tooth-type-specific combinatorial codes of gene expression, is not yet known. There is evidence that combinatorial expression of intracellular transcription factors, including homeobox gene families, may establish domains within the jaws in which different tooth types are able to develop. An evolutionary perspective can be important for our understanding of dental patterning and the designing of appropriate experimental approaches, but dental patterns also raise basic unresolved questions about the nature of the evolutionary assumptions made in developmental genetics.


1986 ◽  
Vol 42 (10) ◽  
pp. 1117-1128 ◽  
Author(s):  
C. J. Epstein

Sign in / Sign up

Export Citation Format

Share Document