mammalian teeth
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 6)

H-INDEX

22
(FIVE YEARS 1)

2021 ◽  
Vol 22 (23) ◽  
pp. 13103
Author(s):  
Maria Elena Zarif ◽  
Sașa Alexandra Yehia ◽  
Bogdan Biță ◽  
Veronica Sătulu ◽  
Sorin Vizireanu ◽  
...  

Despite the technological progress of the last decade, dental caries is still the most frequent oral health threat in children and adults alike. Such a condition has multiple triggers and is caused mainly by enamel degradation under the acidic attack of microbial cells, which compose the biofilm of the dental plaque. The biofilm of the dental plaque is a multispecific microbial consortium that periodically develops on mammalian teeth. It can be partially removed through mechanical forces by individual brushing or in specialized oral care facilities. Inhibition of microbial attachment and biofilm formation, as well as methods to strengthen dental enamel to microbial attack, represent the key factors in caries prevention. The purpose of this study was to elaborate a cold plasma-based method in order to modulate microbial attachment and biofilm formation and to improve the retention of fluoride (F−) in an enamel-like hydroxyapatite (HAP) model sample. Our results showed improved F retention in the HAP model, which correlated with an increased antimicrobial and antibiofilm effect. The obtained cold plasma with a dual effect exhibited through biofilm modulation and enamel strengthening through fluoridation is intended for dental application, such as preventing and treating dental caries and enamel deterioration.


Author(s):  
Bo Li ◽  
Takehito Ouchi ◽  
Yubin Cao ◽  
Zhihe Zhao ◽  
Yi Men

Mesenchymal stem cells (MSCs) could be identified in mammalian teeth. Currently, dental-derived MSCs (DMSCs) has become a collective term for all the MSCs isolated from dental pulp, periodontal ligament, dental follicle, apical papilla, and even gingiva. These DMSCs possess similar multipotent potential as bone marrow-derived MSCs, including differentiation into cells that have the characteristics of odontoblasts, cementoblasts, osteoblasts, chondrocytes, myocytes, epithelial cells, neural cells, hepatocytes, and adipocytes. Besides, DMSCs also have powerful immunomodulatory functions, which enable them to orchestrate the surrounding immune microenvironment. These properties enable DMSCs to have a promising approach in injury repair, tissue regeneration, and treatment of various diseases. This review outlines the most recent advances in DMSCs’ functions and applications and enlightens how these advances are paving the path for DMSC-based therapies.


2021 ◽  
pp. 002203452110018
Author(s):  
R. Fresia ◽  
P. Marangoni ◽  
T. Burstyn-Cohen ◽  
A. Sharir

The systematic classification of the cells that compose a tissue or an organ is key to understanding how these cells cooperate and interact as a functional unit. Our capacity to detect features that define cell identity has evolved from morphological and chemical analyses, through the use of predefined genetic markers, to unbiased transcriptomic and epigenetic profiling. The innovative technology of single-cell RNA sequencing (scRNA-seq) enables transcriptional profiling of thousands of individual cells. Since its development, scRNA-seq has been extensively applied to numerous organs and tissues in a wide range of animal models and human samples, thereby providing a plethora of fundamental biological insights into their development, homeostasis, and pathology. In this review, we present the findings of 3 recent studies that employed scRNA-seq to unravel the complexity of cellular composition in mammalian teeth. These findings offer an unprecedented catalogue of cell types in the mouse incisor, which is a convenient model system for studying continuous tooth growth. These studies identified novel cell types in the tooth epithelium and mesenchyme, as well as new markers for known cell types. Computational analyses of the data also uncovered the lineage and dynamics of cell states during ameloblast and odontoblast differentiation during both normal homeostasis and injury repair. The transcriptional differences between the mouse incisor and mouse and human molars uncover species-specific as well as shared features in tooth cell composition. Here, we highlight these findings and discuss important similarities and differences between these studies. We also discuss potential future applications of scRNA-seq in dental research and dentistry. Together, these studies demonstrate how the rapidly evolving technology of scRNA-seq can advance the study of tooth development and function and provide putative targets for regenerative approaches.


2020 ◽  
Vol 60 (3) ◽  
pp. 594-607
Author(s):  
S B Crofts ◽  
S M Smith ◽  
P S L Anderson

Synopsis Teeth lie at the interface between an animal and its environment and, with some exceptions, act as a major component of resource procurement through food acquisition and processing. Therefore, the shape of a tooth is closely tied to the type of food being eaten. This tight relationship is of use to biologists describing the natural history of species and given the high instance of tooth preservation in the fossil record, is especially useful for paleontologists. However, correlating gross tooth morphology to diet is only part of the story, and much more can be learned through the study of dental biomechanics. We can explore the mechanics of how teeth work, how different shapes evolved, and the underlying forces that constrain tooth shape. This review aims to provide an overview of the research on dental biomechanics, in both mammalian and non-mammalian teeth, and to synthesize two main approaches to dental biomechanics to develop an integrative framework for classifying and evaluating dental functional morphology. This framework relates food material properties to the dynamics of food processing, in particular how teeth transfer energy to food items, and how these mechanical considerations may have shaped the evolution of tooth morphology. We also review advances in technology and new techniques that have allowed more in-depth studies of tooth form and function.


2019 ◽  
Vol 15 (5) ◽  
pp. e1007058 ◽  
Author(s):  
Teemu J. Häkkinen ◽  
S. Susanna Sova ◽  
Ian J. Corfe ◽  
Leo Tjäderhane ◽  
Antti Hannukainen ◽  
...  

2019 ◽  
Author(s):  
Teemu J. Häkkinen ◽  
S. Susanna Sova ◽  
Ian J. Corfe ◽  
Leo Tjäderhane ◽  
Antti Hannukainen ◽  
...  

AbstractThe most mineralized tissue of the mammalian body is tooth enamel. Especially in species with thick enamel, three-dimensional (3D) tomography data has shown that the distribution of enamel varies across the occlusal surface of the tooth crown. Differences in enamel thickness among species and within the tooth crown have been used to examine taxonomic affiliations, life history, and functional properties of teeth. Before becoming fully mineralized, enamel matrix is secreted on the top of a dentine template, and it remains to be explored how matrix thickness is spatially regulated. To provide a predictive framework to examine enamel distribution, we introduce a computational model of enamel matrix secretion that maps the dentine topography to the enamel surface topography. Starting from empirical enamel-dentine junctions, enamel matrix deposition is modeled as a diffusion-limited free boundary problem. Using laboratory microCT and synchrotron tomographic data of pig molars that have markedly different dentine and enamel surface topographies, we show how diffusion-limited matrix deposition accounts for both the process of matrix secretion and the final enamel distribution. Simulations reveal how concave and convex dentine features have distinct effects on enamel surface, thereby explaining why the enamel surface is not a straightforward extrapolation of the dentine template. Human molar simulations show that even subtle variation in dentine topography can be mapped to the enamel surface features. Mechanistic models of extracellular matrix deposition can be used to predict occlusal morphologies of teeth.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Hyejin Seo ◽  
Jinsun Kim ◽  
Jae Joon Hwang ◽  
Ho-Gul Jeong ◽  
Sang-Sun Han ◽  
...  
Keyword(s):  

2016 ◽  
Vol 113 (33) ◽  
pp. 9262-9267 ◽  
Author(s):  
Leslea J. Hlusko ◽  
Christopher A. Schmitt ◽  
Tesla A. Monson ◽  
Marianne F. Brasil ◽  
Michael C. Mahaney

Developmental genetics research on mice provides a relatively sound understanding of the genes necessary and sufficient to make mammalian teeth. However, mouse dentitions are highly derived compared with human dentitions, complicating the application of these insights to human biology. We used quantitative genetic analyses of data from living nonhuman primates and extensive osteological and paleontological collections to refine our assessment of dental phenotypes so that they better represent how the underlying genetic mechanisms actually influence anatomical variation. We identify ratios that better characterize the output of two dental genetic patterning mechanisms for primate dentitions. These two newly defined phenotypes are heritable with no measurable pleiotropic effects. When we consider how these two phenotypes vary across neontological and paleontological datasets, we find that the major Middle Miocene taxonomic shift in primate diversity is characterized by a shift in these two genetic outputs. Our results build on the mouse model by combining quantitative genetics and paleontology, and thereby elucidate how genetic mechanisms likely underlie major events in primate evolution.


Teeth ◽  
2014 ◽  
pp. 86-106
Author(s):  
Peter S. Ungar
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document