Heavy Ball with Friction Dynamical System

Author(s):  
Behzad Djafari-Rouhani ◽  
Hadi Khatibzadeh
2000 ◽  
Vol 02 (01) ◽  
pp. 1-34 ◽  
Author(s):  
H. ATTOUCH ◽  
X. GOUDOU ◽  
P. REDONT

Let H be a real Hilbert space and Φ:H ↦ R a continuously differentiable function, whose gradient is Lipschitz continuous on bounded sets. We study the nonlinear dissipative dynamical system: [Formula: see text], plus Cauchy data, mainly in view of the unconstrained minimization of the function Φ. New results concerning the convergence of a solution to a critical point are given in various situations, including when Φ is convex (possibly with multiple minima) or is a Morse function (the critical point being then generically a local minimum); a counterexample shows that, without peculiar assumptions, a trajectory may not converge. By following the trajectories, we obtain a method for exploring local minima of Φ. A singular perturbation analysis links our results with those concerning gradient systems.


2017 ◽  
Vol 13 (2) ◽  
pp. 4657-4670
Author(s):  
W. S. Amer

This work touches two important cases for the motion of a pendulum called Sub and Ultra-harmonic cases. The small parameter method is used to obtain the approximate analytic periodic solutions of the equation of motion when the pivot point of the pendulum moves in an elliptic path. Moreover, the fourth order Runge-Kutta method is used to investigate the numerical solutions of the considered model. The comparison between both the analytical solution and the numerical ones shows high consistency between them.


Sign in / Sign up

Export Citation Format

Share Document