Numerical modelling of dynamic indentation of rock with polygonal finite elements

2019 ◽  
pp. 632-637
Author(s):  
T. Saksala
2013 ◽  
Vol 74 (2) ◽  
pp. 134-151 ◽  
Author(s):  
Cameron Talischi ◽  
Anderson Pereira ◽  
Glaucio H. Paulino ◽  
Ivan F.M. Menezes ◽  
Márcio S. Carvalho

2008 ◽  
Vol 47-50 ◽  
pp. 125-128 ◽  
Author(s):  
Charles Brugger ◽  
Yves Bréchet ◽  
Marc Fivel

Interlocked materials are new examples of “hybrid materials”, mixing materials and structures at a millimetric scale. They consist of periodic assemblies of elementary blocks with specific shapes, maintained in contact by compressive boundary conditions. These “pre-fragmented materials” can simultaneously fulfil antagonistic properties such as high strength together with good damage tolerance. We performed indentation tests on two different structures: (i) an assembly of osteomorphic ice blocks and (ii) an assembly of plaster made cubes. The tests being performed up to the failure, it is found that these structures dissipate much more mechanical energy than similar monolithic plates and preserve their integrity up to much larger deformation. A numerical modelling is then developed in order to reproduce this behaviour. Using finite elements, we simulated the friction contact between two elastic cubes or blocks, for a given lateral load and friction coefficient. The outputs are then introduced as local contact rules in a “Discrete Elements code” specially developed for this study. The discrete code is then used to model the elastic and damage behaviour of assemblies of cubes or osteomorphic blocks. The comparison with experimental results is satisfactory. Finally, the code is used to model larger assemblies of interlocked structures for which the force path is analysed.


2018 ◽  
Vol 63 ◽  
pp. 149-163 ◽  
Author(s):  
Juan Cao ◽  
Yanyang Xiao ◽  
Zhonggui Chen ◽  
Wenping Wang ◽  
Chandrajit Bajaj

1996 ◽  
Vol 15 (4) ◽  
pp. 161-163 ◽  
Author(s):  
S.I. Arsenev ◽  
A.M. Mishin ◽  
A.A. Sizonov ◽  
I.N. Tituch

The analysis of the reaction of the human body to a vibrational load allows us to determine the danger of this effect for the person. It is possible to evaluate the vibrational effect of existing technical systems and to form requirements for new machines and equipment from the point of vibrational safety. The technique is based on a finite element representation of the human body, analysis of skeletal muscle sensitivity, numerical modelling of effects and calculation by the method of finite elements.


PAMM ◽  
2010 ◽  
Vol 10 (1) ◽  
pp. 299-300
Author(s):  
Jayabal Kaliappan ◽  
Andreas Menzel ◽  
Arockiarajan Arunachalakasi ◽  
Sivakumar M Srinivasan

Sign in / Sign up

Export Citation Format

Share Document