damage tolerance
Recently Published Documents


TOTAL DOCUMENTS

1300
(FIVE YEARS 220)

H-INDEX

57
(FIVE YEARS 8)

2022 ◽  
Vol 8 ◽  
Author(s):  
Denisse Carvajal-Maldonado ◽  
Lea Drogalis Beckham ◽  
Richard D. Wood ◽  
Sylvie Doublié

DNA polymerases catalyze nucleotidyl transfer, the central reaction in synthesis of DNA polynucleotide chains. They function not only in DNA replication, but also in diverse aspects of DNA repair and recombination. Some DNA polymerases can perform translesion DNA synthesis, facilitating damage tolerance and leading to mutagenesis. In addition to these functions, many DNA polymerases conduct biochemically distinct reactions. This review presents examples of DNA polymerases that carry out nuclease (3ʹ—5′ exonuclease, 5′ nuclease, or end-trimming nuclease) or lyase (5′ dRP lyase) extracurricular activities. The discussion underscores how DNA polymerases have a remarkable ability to manipulate DNA strands, sometimes involving relatively large intramolecular movement.


2022 ◽  
Author(s):  
Katarzyna H Maslowska ◽  
Vincent Pagès

DNA Damage Tolerance (DDT) funcPons to bypass replicaPon-blocking lesions and is divided into two disPnct pathways: error-prone Translesion Synthesis (TLS) and error-free Damage Avoidance (DA). Rad5 is an important player in these processes. Indeed, Saccharomyces cerevisiae Rad5 is a large mulPfuncPonal protein that contains three well defined domains: a RING domain that promotes PCNA polyubiquiPnaPon and a ssDNA-dependent ATPase/helicase domain, that are both conserved in Rad5 human ortholog HLTF. Yeast Rad5 also contains a Rev1-binding domain. In this study we used domain-specific mutants to address the contribuPon of each of the Rad5 funcPons to lesion tolerance. Using an assay based on the inserPon of a single lesion into a defined locus in the genome of a living yeast cell, we demonstrate that Rad5 plays opposite roles in lesion tolerance: i) Rad5 favors error-free lesion bypass by acPvaPng template switching through polyubiquiPnaPon of PCNA; ii) Rad5 is also required for TLS by recruiPng the TLS polymerase Rev1. We also show that the helicase acPvity does not play any role in lesion tolerance/


2022 ◽  
Author(s):  
Vinay K. Goyal ◽  
Jacob Rome ◽  
Christopher Sagrillo ◽  
Kauser S. Imtiaz ◽  
Kenneth R. Hamm

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7526
Author(s):  
Amrit Shankar Verma ◽  
Nils Petter Vedvik ◽  
Zhen Gao ◽  
Saullo G. P. Castro ◽  
Julie J. E. Teuwen

The leading edges of wind turbine blades are adhesively bonded composite sections that are susceptible to impact loads during offshore installation. The impact loads can cause localized damages at the leading edges that necessitate damage tolerance assessment. However, owing to the complex material combinations together with varying bondline thicknesses along the leading edges, damage tolerance investigation of blades at full scale is challenging and costly. In the current paper, we design a coupon scale test procedure for investigating bondline thickness effects on damage tolerance of joints after being subjected to localized impact damages. Joints with bondline thicknesses (0.6 mm, 1.6 mm, and 2.6 mm) are subjected to varying level of impact energies (5 J, 10 J, and 15 J), and the dominant failure modes are identified together with analysis of impact kinematics. The damaged joints are further tested under tensile lap shear and their failure loads are compared to the intact values. The results show that for a given impact energy, the largest damage area was obtained for the thickest joint. In addition, the joints with the thinnest bondline thicknesses displayed the highest failure loads post impact, and therefore the greatest damage tolerance. For some of the thin joints, mechanical interlocking effects at the bondline interface increased the failure load of the joints by 20%. All in all, the coupon scale tests indicate no significant reduction in failure loads due to impact, hence contributing to the question of acceptable localized damage, i.e., damage tolerance with respect to static strength of the whole blade.


2021 ◽  
Vol 7 (49) ◽  
Author(s):  
Laura J. Bailey ◽  
Rebecca Teague ◽  
Peter Kolesar ◽  
Lewis J. Bainbridge ◽  
Howard D. Lindsay ◽  
...  
Keyword(s):  

AIAA Journal ◽  
2021 ◽  
pp. 1-15
Author(s):  
Qiang Ren ◽  
Xiaojun Wang ◽  
Shanglu Shi ◽  
Yujia Ma ◽  
Jing Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document