Cooperative Localization and Navigation for Multiple Autonomous Underwater Vehicles

Author(s):  
LiChuan Zhang
2012 ◽  
Vol 4 ◽  
pp. 227-231 ◽  
Author(s):  
Li Chuan Zhang ◽  
Ming Yong Liu ◽  
Fu Bin Zhang

In this paper, we propose an algorithm based on double acoustic measurement for cooperative navigation of multiple autonomous underwater vehicles. Research on cooperative navigation of AUV is an important topic to solve the navigation problem in long range and deep sea. We investigate the improvement in navigation accuracy. In the Leader-follow structure, the leader AUV is equipped with high precision navigation system, and the follow AUV is equipped with low precision navigation system. They all are equipped with acoustic device to measure relative location. Traditionally geometry triangulation method is used to calculate the position of follow AUV, the method may cause fault error solution. Double acoustic communication measurement method was designed, which fused the proprioceptive and exteroceptive sensors. The research results prove that the navigation accuracy has been improved effectively.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Xu Bo ◽  
Asghar A. Razzaqi ◽  
Ghulam Farid

Self-positioning of submerged Autonomous Underwater Vehicles (AUVs) is a challenging task due to nonavailability of GPS signals. One of the most recent solutions for this is the use of surface vehicles (sensors) for cooperative localization of the underwater vehicles (targets) by measuring their relative positions. However, correct placement of the surface sensors is very critical as their geometric configuration affects their observability and hence availability of their relative positions information to the targets. In this paper, a comparative survey of sensors’ optimal formation techniques for cooperative localization of AUVs has been presented. Introduction to the basic cooperative localization techniques and background theory of optimal sensor placements have been provided. This paper can also serve as a fundamental reading material for students and researchers pursuing research on optimal sensor placement for cooperative localization.


Sign in / Sign up

Export Citation Format

Share Document