Methods of Using Special Function Sequences, Number Sequences, and Riordan Arrays

2021 ◽  
pp. 193-304
Author(s):  
Tian-Xiao He
1986 ◽  
Vol 23 (04) ◽  
pp. 893-903 ◽  
Author(s):  
Michael L. Wenocur

Brownian motion subject to a quadratic killing rate and its connection with the Weibull distribution is analyzed. The distribution obtained for the process killing time significantly generalizes the Weibull. The derivation involves the use of the Karhunen–Loève expansion for Brownian motion, special function theory, and the calculus of residues.


Author(s):  
В.М. Щербина ◽  
◽  
О.Є. Мацулевич ◽  
С.М. Коломієць ◽  
◽  
...  
Keyword(s):  

1983 ◽  
Vol 48 (10) ◽  
pp. 2888-2892 ◽  
Author(s):  
Vilém Kodýtek

A special free energy function is defined for a solution in the osmotic equilibrium with pure solvent. The partition function of the solution is derived at the McMillan-Mayer level and it is related to this special function in the same manner as the common partition function of the system to its Helmholtz free energy.


2021 ◽  
Vol 9 (1) ◽  
pp. 22-30
Author(s):  
Sibel Koparal ◽  
Neşe Ömür ◽  
Ömer Duran

Abstract In this paper, by means of the summation property to the Riordan array, we derive some identities involving generalized harmonic, hyperharmonic and special numbers. For example, for n ≥ 0, ∑ k = 0 n B k k ! H ( n . k , α ) = α H ( n + 1 , 1 , α ) - H ( n , 1 , α ) , \sum\limits_{k = 0}^n {{{{B_k}} \over {k!}}H\left( {n.k,\alpha } \right) = \alpha H\left( {n + 1,1,\alpha } \right) - H\left( {n,1,\alpha } \right)} , and for n > r ≥ 0, ∑ k = r n - 1 ( - 1 ) k s ( k , r ) r ! α k k ! H n - k ( α ) = ( - 1 ) r H ( n , r , α ) , \sum\limits_{k = r}^{n - 1} {{{\left( { - 1} \right)}^k}{{s\left( {k,r} \right)r!} \over {{\alpha ^k}k!}}{H_{n - k}}\left( \alpha \right) = {{\left( { - 1} \right)}^r}H\left( {n,r,\alpha } \right)} , where Bernoulli numbers Bn and Stirling numbers of the first kind s (n, r).


2016 ◽  
Vol 25 (8) ◽  
pp. 080303 ◽  
Author(s):  
Feng Chen ◽  
Hong-Yi Fan

2012 ◽  
Vol 96 (536) ◽  
pp. 213-220
Author(s):  
Harlan J. Brothers

Pascal's triangle is well known for its numerous connections to probability theory [1], combinatorics, Euclidean geometry, fractal geometry, and many number sequences including the Fibonacci series [2,3,4]. It also has a deep connection to the base of natural logarithms, e [5]. This link to e can be used as a springboard for generating a family of related triangles that together create a rich combinatoric object.2. From Pascal to LeibnizIn Brothers [5], the author shows that the growth of Pascal's triangle is related to the limit definition of e.Specifically, we define the sequence sn; as follows [6]:


2021 ◽  
Vol 76 (1) ◽  
Author(s):  
Donatella Merlini

AbstractIn the context of Riordan arrays, the problem of determining the square root of a Bell matrix $$R={\mathcal {R}}(f(t)/t,\ f(t))$$ R = R ( f ( t ) / t , f ( t ) ) defined by a formal power series $$f(t)=\sum _{k \ge 0}f_kt^k$$ f ( t ) = ∑ k ≥ 0 f k t k with $$f(0)=f_0=0$$ f ( 0 ) = f 0 = 0 is presented. It is proved that if $$f^\prime (0)=1$$ f ′ ( 0 ) = 1 and $$f^{\prime \prime }(0)\ne 0$$ f ″ ( 0 ) ≠ 0 then there exists another Bell matrix $$H={\mathcal {R}}(h(t)/t,\ h(t))$$ H = R ( h ( t ) / t , h ( t ) ) such that $$H*H=R;$$ H ∗ H = R ; in particular, function h(t) is univocally determined by a symbolic computational method which in many situations allows to find the function in closed form. Moreover, it is shown that function h(t) is related to the solution of Schröder’s equation. We also compute a Riordan involution related to this kind of matrices.


1985 ◽  
Vol 29 (4) ◽  
pp. 367-371
Author(s):  
Christopher G. Koch

Expert systems applications for special environments impose special requirements on the user-system interface. A study was conducted to determine requirements and define a design concept for the interface for an expert system being developed to support corrective maintenance and troubleshooting of gas turbine electronic equipment and controls. The resulting design specifies a portable unit containing color flat panel video/graphics display, special function membrane keypad, miniature printer, and headset with voice input/output. Communication with the expert system is structured by multiple-window information presentation and voice-activated control functions.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
GwangYeon Lee ◽  
Mustafa Asci

Riordan arrays are useful for solving the combinatorial sums by the help of generating functions. Many theorems can be easily proved by Riordan arrays. In this paper we consider the Pascal matrix and define a new generalization of Fibonacci polynomials called(p,q)-Fibonacci polynomials. We obtain combinatorial identities and by using Riordan method we get factorizations of Pascal matrix involving(p,q)-Fibonacci polynomials.


Sign in / Sign up

Export Citation Format

Share Document