Monitoring Soil Deformation

2021 ◽  
pp. 169-205
Author(s):  
Kevin M. O’Connor ◽  
Charles H. Dowding
Keyword(s):  
1995 ◽  
Vol 32 (4) ◽  
pp. 199-204 ◽  
Author(s):  
Ravi Godbole ◽  
Ralph Alcock

2021 ◽  
Author(s):  
Junqing Xue ◽  
Dong Xu ◽  
Yufeng Tang ◽  
Bruno Briseghella ◽  
Fuyun Huang ◽  
...  

<p><br clear="none"/></p><p>The vulnerability problem of expansion joints could be fundamentally resolved using the concept of jointless bridges. The longitudinal deformation of the superstructure can be transferred to the backfill by using the approach slab. The flat buried approach slab (FBAS) has been used in many jointless bridges in European countries. In order to understand the mechanical performance of FBAS and soil deformation, a finite element model (FEM) was implemented in PLAXIS. Considering the friction between the FBAS and soil, the buried depth, the FBAS length and thickness as parameters, a parametric analysis was carried out. According to the obtained results and in order to reduce the soil deformation above the FBAS, it is suggested to increase the friction between the FBAS and sandy soil, and the buried depth of FBAS. Moreover, it should be paid attention to the vertical soil deformation and the concrete tensile stress of FBAS in pulling condition.</p>


2021 ◽  
Vol 82 (3) ◽  
pp. 207-209
Author(s):  
Ina Bojinova-Popova

The international practice often faces significant settlements of terrains and structures due to dewatering. This study presents of the dewatering impact during the construction of Metrostation 9-III from the Sofia Metropoliten on the surrounding terrains and buildings. The subsidences are quantified for specific values of the soil deformation modulus and varying values of the soil hydraulic conductivity.


Sign in / Sign up

Export Citation Format

Share Document