Visualization of non-uniform soil deformation during triaxial testing

2021 ◽  
Author(s):  
Lin Li ◽  
Peng Li ◽  
Yang Cai ◽  
Yi Lu
2016 ◽  
Vol 53 (3) ◽  
pp. 472-489 ◽  
Author(s):  
Lin Li ◽  
Xiong Zhang ◽  
Gang Chen ◽  
Robert Lytton

When characterizing an unsaturated soil using the triaxial test apparatus, it is required to measure the soil deformation during loading. Recently, a photogrammetry-based method has been developed for total and localized volume change measurements on unsaturated soils during triaxial testing. In this study, more in-depth discussions on the photogrammetry-based method are addressed, such as system setup, the measurement procedure, accuracy self-check, data post-processing, and differences from conventional image-based methods. Also, an application of the photogrammetry-based method on unsaturated soil deformation measurements is presented through a series of undrained triaxial tests with different loading paths. After testing, three-dimensional (3D) models of the tested soils at different loading steps were constructed based on the 3D coordinates of measurement targets on the soil surface. Clear barreling processes for soils during deviatoric loading were observed through the constructed 3D models at different axial strain levels. Soil volume changes and volumetric strain nonuniformities during isotropic and deviatoric loadings were extracted based upon detailed analyses of different soil layers. Through a full-field strain distribution analysis, a shear band evolution process was captured for the soil during deviatoric loading at a low confining stress. The photogrammetry-based method proved to be very powerful for in-depth soil deformation characteristics investigation.


Géotechnique ◽  
2020 ◽  
Vol 70 (2) ◽  
pp. 95-107
Author(s):  
Saizhao Du ◽  
Siau Chen Chian ◽  
Changbing Qin

1995 ◽  
Vol 32 (4) ◽  
pp. 199-204 ◽  
Author(s):  
Ravi Godbole ◽  
Ralph Alcock

2000 ◽  
Vol 37 (6) ◽  
pp. 1325-1331
Author(s):  
J LH Grozic ◽  
M E Lefebvre ◽  
P K Robertson ◽  
N R Morgenstern

Time domain reflectometry (TDR) can be used to determine the volumetric water content of soils. This note describes the utilization of a TDR miniprobe in triaxial testing. The TDR performance was examined with a series of tests that not only proved its reliability but also resulted in two empirical correlations. Using these correlations, the degree of saturation and volumetric water content during triaxial testing could be determined. The TDR was then put to use in a laboratory program designed to investigate the response of loose gassy sand under static and cyclic loading. Because of the TDR measurements it was possible to determine the degree of saturation and void ratio of the gassy specimens. The TDR miniprobe proved to be accurate, simple to use, and inexpensive to build.Key words: time domain reflectometry, TDR, triaxial testing, gassy, unsaturated.


Sign in / Sign up

Export Citation Format

Share Document