Demand response from residential air conditioning load using smart controller

Author(s):  
Aadesh Arya ◽  
Saurabh Chanana ◽  
Ashwani Kumar
2019 ◽  
Author(s):  
Ryan Schwartz ◽  
John F. Gardner

Abstract Thermostatically controlled loads (TCLs) are often considered as a possible resource for demand response (DR) events. However, it is well understood that coordinated control of a large population of previously un-coordinated TCLs may result in load synchronization that results in higher peaks and large uncontrolled swings in aggregate load. In this paper we use agent based modeling to simulate a number of residential air conditioning loads and allow each to communicate a limited amount of information with their nearest neighbors. As a result, we document emergent behavior of this large scale, distributed and nonlinear system. Using the techniques described here, the population of TCLs experienced up to a 30% reduction in peak demand following the DR event. This behavior is shown to be beneficial to the goals of balancing the grid and integrating increasing penetration of variable generators.


2020 ◽  
Vol 279 ◽  
pp. 115708
Author(s):  
Ning Qi ◽  
Lin Cheng ◽  
Helin Xu ◽  
Kuihua Wu ◽  
XuLiang Li ◽  
...  

2018 ◽  
Vol 12 (19) ◽  
pp. 4260-4268 ◽  
Author(s):  
Xingying Chen ◽  
Jixiang Wang ◽  
Jun Xie ◽  
Shuyang Xu ◽  
Kun Yu ◽  
...  

2021 ◽  
Vol 16 (3) ◽  
pp. 1273-1284
Author(s):  
Hye Ji Kim ◽  
Hosung Jung ◽  
Young Jun Ko ◽  
Eun Su Chae ◽  
Hyo Jin Kim ◽  
...  

AbstractThis paper proposes an algorithm for the cooperative operation of air conditioning facilities and the energy storage system (ESS) in railway stations to minimize electricity. Unlike traditional load patterns, load patterns of an urban railway station can peak where energy charge rates are not high. Due to this possibility, if applying the traditional peak-reduction algorithm to railway loads, energy changes can increase, resulting in higher electricity bills. Therefore, it is required to develop a new method for minimizing the sum of capacity charges and energy charges, which is a non-linear problem. To get a feasible solution for this problem, we suggest an algorithm that optimizes the facility operation through two optimizations (primary and secondary). This method is applied to the air-quality change model for operating air conditioning facilities as demand-response (DR) resources in railway stations. This algorithm makes it possible to estimate operable DR capacity every hour, rather than calculating the capacity of DR resources conservatively in advance. Finally, we perform a simulation for the application of the proposed method to the operation of DR resources and ESS together. The simulation shows that electricity bills become lowered, and the number of charging and discharging processes of ESS is also reduced.


2016 ◽  
Vol 44 (6) ◽  
pp. 1036-1055 ◽  
Author(s):  
Andrew M Fraser ◽  
Mikhail V Chester ◽  
David Eisenman ◽  
David M Hondula ◽  
Stephanie S Pincetl ◽  
...  

Access to air conditioned space is critical for protecting urban populations from the adverse effects of heat exposure. Yet there remains fairly limited knowledge of the penetration of private (home air conditioning) and distribution of public (cooling centers and commercial space) cooled space across cities. Furthermore, the deployment of government-sponsored cooling centers is likely to be inadequately informed with respect to the location of existing cooling resources (residential air conditioning and air conditioned public space), raising questions of the equitability of access to heat refuges. We explore the distribution of private and public cooling resources and access inequities at the household level in two major US urban areas: Los Angeles County, California and Maricopa County, Arizona (whose county seat is Phoenix). We evaluate the presence of in-home air conditioning and develop a walking-based accessibility measure to air conditioned public space using a combined cumulative opportunities-gravity approach. We find significant variations in the distribution of residential air conditioning across both regions which are largely attributable to building age and inter/intra-regional climate differences. There are also regional disparities in walkable access to public cooled space. At average walking speeds, we find that official cooling centers are only accessible to a small fraction of households (3% in Los Angeles, 2% in Maricopa) while a significantly higher number of households (80% in Los Angeles, 39% in Maricopa) have access to at least one other type of public cooling resource such as a library or commercial establishment. Aggregated to a neighborhood level, we find that there are areas within each region where access to cooled space (either public or private) is limited which may increase heat-related health risks.


Sign in / Sign up

Export Citation Format

Share Document