Computational design tools for integrated design

2010 ◽  
pp. 471-472 ◽  
Author(s):  
M Holst ◽  
P Kirkegaard
Author(s):  
Cari R. Bryant ◽  
Matt Bohm ◽  
Robert B. Stone ◽  
Daniel A. McAdams

This paper builds on previous concept generation techniques explored at the University of Missouri - Rolla and presents an interactive concept generation tool aimed specifically at the early concept generation phase of the design process. Research into automated concept generation design theories led to the creation of two distinct design tools: an automated morphological search that presents a designer with a static matrix of solutions that solve the desired input functionality and a computational concept generation algorithm that presents a designer with a static list of compatible component chains that solve the desired input functionality. The merger of both the automated morphological matrix and concept generation algorithm yields an interactive concept generator that allows the user to select specific solution components while receiving instantaneous feedback on component compatibility. The research presented evaluates the conceptual results from the hybrid morphological matrix approach and compares interactively constructed solutions to those returned by the non-interactive automated morphological matrix generator using a dog food sample packet counter as a case study.


Author(s):  
T. Freiheit ◽  
S. S. Park ◽  
V Giuliani

Global markets demand quick product develop-ment that is simultaneously cost-effective and meets stakeholder needs. Many tools and design methodolo-gies have been developed that address individual as-pects of the design problem, such as Axiomatic De-sign, Design for Manufacture, Life Cycle Design, etc. However, competitive viability can be put at risk when a product fails to achieve all customer, business, manufacturing, and regulatory requirements. To de-liver all design requirements, an efficient integrated design methodology is required. This paper proposes a design approach which integrates previously devel-oped design tools to economically achieve essential design objectives, within a framework that facilitates a rapid design process.


Author(s):  
Caetano Peng

This paper highlights some engine non-linearities that can affect both performance and robustness of aero engines. It pays particular attention to non-linearities generated at the stator vane contact end joints. These non-linearities resulting from friction contact joints affect the vane modeshapes, damping and forced response. This work proposes upper and lower bound solutions based on vane end restraints non-linearities to predict conservative forced response of stator vanes. Some non-linearities such as those caused by mistuning can be beneficial to the component and system. There are also non-linearities that can be detrimental to engine performance, robustness and reliability. Moreover, it proposes and discusses the concept of temporal HCF or CCF lifing method. Recent developments in FE, CFD, mistuning, forced response and probabilistic codes can help to create more integrated design tools that incorporate time-dependent non-linearities in the lifing of aero engine components. Computations performed here demonstrated some level of component virtual testing. These analyses are important component virtual testing that will be gradually extended to whole aero engine virtual testing.


2021 ◽  
Author(s):  
Göksel Mısırlı ◽  
Bill Yang ◽  
Katherine James ◽  
Anil Wipat

Engineering genetic regulatory circuits is key to the creation of biological applications that are responsive to environmental changes. Computational models can assist in understanding especially large and complex circuits where manual analysis is infeasible, permitting a model-driven design process. However, there are still few tools that offer the ability to simulate the system under design. One of the reasons for this is the lack of accessible model repositories or libraries that cater for the modular composition of models of synthetic systems that do not yet exist in nature. Here, we present the Virtual Parts Repository 2, a resource to facilitate the model-driven design of genetic regulatory circuits, which provides reusable, modular and composable models. The repository is service-oriented and can be utilized by design tools in computational workflows. Designs provided in Synthetic Biology Open Language documents are used to derive system-scale and hierarchical Systems Biology Markup Language models. We also present a rule-based modeling abstraction based on reaction networks to facilitate scalable and modular modeling of complex and large designs. This modeling abstraction incorporates design patterns such as roadblocking, distributed deployment of genetic circuits using plasmids and cellular resource dependency. The computational resources and the modeling abstraction presented in this paper allow computational design tools to take advantage of computational simulations and ultimately help facilitate more predictable applications.


Author(s):  
Anand Balu Nellippallil ◽  
Pranav Mohan ◽  
Janet K. Allen ◽  
Farrokh Mistree

Abstract The production of steel products involves a series of manufacturing processes. The material Thermo-Mechanical Processing (TMP) history at each process affects the final properties and performances of the product. Experiments and plant trials to predict these properties and performance of steel products are expensive and time consuming. This has resulted in the need for computational design methods and tools that support a human designer in realizing such complex systems involving the material, product and manufacturing processes from a simulation-based design perspective. In this paper, we present a Goal-oriented Inverse Design method to achieve the integrated design exploration of materials, products and manufacturing processes. The key functionality offered is the capability to carry out a microstructure-mediated design satisficing specific processing requirements and performance goals of the product. Given models to establish the information flow chain, a designer can use the method for the decision-based design exploration of material microstructure and processing paths to realize products in a manufacturing process chain. The efficacy of the method is tested using an industry-inspired hot rolling problem to inversely design the thermo-mechanical processing of a steel rod. The focus here is the method and associated design constructs which are generic and support the formulation and decision-based design of similar problems involving materials, products and associated manufacturing processes.


Sign in / Sign up

Export Citation Format

Share Document