Seismic risk assessment: A software procedure for the simulation of damage scenarios in emergency management

1996 ◽  
Vol 12 (3) ◽  
pp. 371-394 ◽  
Author(s):  
Alex H. Barbat ◽  
Fabricio Yépez Moya ◽  
JoséA. Canas

A methodology for simulating seismic damage of unreinforced masonry buildings for seismic risk assessment of urban areas is presented in this paper. The methodology is based on the Italian vulnerability index and on the results of a post-earthquake damage survey study whose main result was an observed vulnerability function. The Monte Carlo method was then used to simulate damage probability matrices, fragility curves and vulnerability functions, all of which are the basis of a seismic risk study. The simulation process required the generation of thousands of hypothetical buildings, the analysis of their seismic behaviour and probabilistic studies of the computed results. As an example, probable damage scenarios were developed for an urban zone of Barcelona.


Author(s):  
Antonio C. Caputo

Seismic vulnerability of industrial plants processing hazardous substances is widely documented, and thousands of such facilities are located in areas of medium to high seismicity near population centers. Nevertheless, with the exception of the nuclear industry, national or international standards do not establish any procedure for the overall seismic risk assessment of industrial process plants located in earthquake-prone areas. Moreover, existing Probabilistic Seismic Risk Assessment (PSRA) methods developed by the nuclear industry are not readily applicable to process plants. In order to overcome this limitation, in this paper a novel general-purpose PSRA method is presented, able to systematically generate potential starting scenarios, deriving from simultaneous interactions of the earthquake with each separate equipment, and to account for propagation of effects between distinct equipment (i.e. Domino effects) keeping track of multiple simultaneous and possibly interacting chains of accidents. This allows to dynamically generate damage scenarios, and to rank their risk levels determining the critical process units that can be involved.


2019 ◽  
Vol 1 (Special Issue on First SACEE'19) ◽  
pp. 55-75
Author(s):  
Fabio Sabetta

In this paper, the main features of the policies adopted in Italy for seismic risk reduction are discussed. Particular attention is given to the Pre-disaster prevention activities such as the implementation of the building code, the seismic risk assessment for a priority scale of intervention, tax incentives and public funding for the vulnerability reduction of the existing buildings, information to population and school education, technical training of experts. The phases of response and post-disaster activities, including emergency management, search and rescue, loss scenarios, and safety assessment of buildings, are also discussed taking example from the most recent devastating earthquakes in Italy (L.Aquila 2009, Amatrice 2016).


2011 ◽  
Vol 05 (01) ◽  
pp. 31-45 ◽  
Author(s):  
T. IMAI ◽  
S. WADA ◽  
T. KOIKE

In order to keep the existing lifeline network system at a favorable seismic performance level, it is necessary to carry out retrofitting activities. This study proposes a seismic risk assessment method for the existing deteriorated lifeline network system based on the probability of system performance failure. Numerical simulations are carried out for the existing water distribution network system for several seismic investment strategies to support the decision making of seismic disaster mitigation planning. Effective planning of seismic retrofitting activities and disaster mitigation for the existing lifeline system can be realized using the newly developed assessment method.


2008 ◽  
Vol 12 (sup2) ◽  
pp. 199-210 ◽  
Author(s):  
Dominik H. Lang ◽  
Sergio Molina-Palacios ◽  
Conrad D. Lindholm

Sign in / Sign up

Export Citation Format

Share Document