2020 ◽  
Vol 9 (3) ◽  
pp. 1189-1195 ◽  
Author(s):  
Y. Bhargavi ◽  
T. Eswarlal ◽  
S. Ragamayi
Keyword(s):  

Author(s):  
JING TIAN ◽  
KEXIANG XU ◽  
SANDI KLAVŽAR

Abstract The general position number of a connected graph is the cardinality of a largest set of vertices such that no three pairwise-distinct vertices from the set lie on a common shortest path. In this paper it is proved that the general position number is additive on the Cartesian product of two trees.


2021 ◽  
Vol 37 (3) ◽  
pp. 907-917
Author(s):  
Martin Kreh ◽  
Jan-Hendrik de Wiljes

AbstractIn 2011, Beeler and Hoilman generalized the game of peg solitaire to arbitrary connected graphs. In the same article, the authors proved some results on the solvability of Cartesian products, given solvable or distance 2-solvable graphs. We extend these results to Cartesian products of certain unsolvable graphs. In particular, we prove that ladders and grid graphs are solvable and, further, even the Cartesian product of two stars, which in a sense are the “most” unsolvable graphs.


1992 ◽  
Vol 16 (4) ◽  
pp. 297-303
Author(s):  
Elefterie Olaru ◽  
Eugen M??ndrescu

2010 ◽  
Vol 21 (03) ◽  
pp. 257-276 ◽  
Author(s):  
ANDREAS MALETTI ◽  
CĂTĂLIN IONUŢ TÎRNĂUCĂ

The fundamental properties of the class QUASI of quasi-relabeling relations are investigated. A quasi-relabeling relation is a tree relation that is defined by a tree bimorphism (φ, L, ψ), where φ and ψ are quasi-relabeling tree homomorphisms and L is a regular tree language. Such relations admit a canonical representation, which immediately also yields that QUASI is closed under finite union. However, QUASI is not closed under intersection and complement. In addition, many standard relations on trees (e.g., branches, subtrees, v-product, v-quotient, and f-top-catenation) are not quasi-relabeling relations. If quasi-relabeling relations are considered as string relations (by taking the yields of the trees), then every Cartesian product of two context-free string languages is a quasi-relabeling relation. Finally, the connections between quasi-relabeling relations, alphabetic relations, and classes of tree relations defined by several types of top-down tree transducers are presented. These connections yield that quasi-relabeling relations preserve the regular and algebraic tree languages.


2011 ◽  
Vol 71 (1) ◽  
pp. 105-113 ◽  
Author(s):  
Reza Moraveji ◽  
Hamid Sarbazi-Azad ◽  
Albert Y. Zomaya

1982 ◽  
Vol 92 (3) ◽  
pp. 451-466 ◽  
Author(s):  
W. J. R. Mitchell

This paper investigates the ‘general position’ properties which ANR's may possess. The most important of these is the disjoint discs property of Cannon (5), which plays a vital role in recent striking characterizations of manifolds (5, 9, 12, 18, 19, 22). Also considered are the property Δ of Borsuk(2) (which ensures an abundance of dimension-preserving maps), and the vanishing of local homology groups up to a given dimension (cf. (9)). Our main results give relations between these properties, and clarify their behaviour under the stabilization operation of taking cartesian product with the real line. In the last section these results are applied to give partial solutions to questions about homogeneous ANR's.


Sign in / Sign up

Export Citation Format

Share Document