Medical Applications of Polyurethane Shape Memory Polymers

2011 ◽  
pp. 307-324
2007 ◽  
Vol 2 (1) ◽  
pp. S23-S27 ◽  
Author(s):  
Witold Sokolowski ◽  
Annick Metcalfe ◽  
Shunichi Hayashi ◽  
L'Hocine Yahia ◽  
Jean Raymond

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Tanner Alauzen ◽  
Shaelyn Ross ◽  
Samy Madbouly

Abstract Polymers have recently been making media headlines in various negative ways. To combat the negative view of those with no polymer experience, sustainable and biodegradable materials are constantly being researched. Shape-memory polymers, also known as SMPs, are a type of polymer material that is being extensively researched in the polymer industry. These SMPs can exhibit a change in shape because of an external stimulus. SMPs that are biodegradable or biocompatible are used extensively in medical applications. The use of biodegradable SMPs in the medical field has also led to research of the material in other applications. The following categories used to describe SMPs are discussed: net points, composition, stimulus, and shape-memory function. The addition of fillers or additives to the polymer matrix makes the SMP a polymer composite. Currently, biodegradable fillers are at the forefront of research because of the demand for sustainability. Common biodegradable fillers or fibers used in polymer composites are discussed in this chapter including Cordenka, hemp, and flax. Some other nonbiodegradable fillers commonly used in polymer composites are evaluated including clay, carbon nanotubes, bioactive glass, and Kevlar. The polymer and filler phase differences will be evaluated in this chapter. The recent advances in biodegradable shape-memory polymers and composites will provide a more positive perspective of the polymer industry and help to attain a more sustainable future.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1065 ◽  
Author(s):  
Agueda Sonseca ◽  
Salim Madani ◽  
Alexandra Muñoz-Bonilla ◽  
Marta Fernández-García ◽  
Laura Peponi ◽  
...  

To use shape memory materials based on poly (lactic acid) (PLA) for medical applications is essential to tune their transition temperature (Ttrans) near to the human body temperature. In this study, the combination of lactic acid oligomer (OLA), acting as a plasticizer, together with chitosan-mediated silver nanoparticles (AgCH-NPs) to create PLA matrices is studied to obtain functional shape memory polymers for potential medical applications. PLA/OLA nanocomposites containing different amounts of AgCH-NPs were obtained and profusely characterized relating their structure with their antimicrobial and shape memory performances. Nanocomposites exhibited shape memory responses at the temperature of interest (near physiological one), as well as excellent shape memory responses, shorter recovery times and higher recovery ratios (over 100%) when compared to neat materials. Moreover, antibacterial activity tests confirmed biocidal activity; therefore, these functional polymer nanocomposites with shape memory, degradability and biocidal activity show great potential for soft actuation applications in the medical field.


2008 ◽  
Author(s):  
Bernhard Hiebl ◽  
Dorothee Rickert ◽  
Rosemarie Fuhrmann ◽  
Friedrich Jung ◽  
Andres Lendlein ◽  
...  

Author(s):  
Tianjiao Wang ◽  
Jun Zhao ◽  
Chuanxin Weng ◽  
Tong Wang ◽  
Yayun Liu ◽  
...  

Shape memory polymers (SMPs) that change shapes as designed by external stimuli have become one of the most promising materials as actuators, sensors, and deployable devices. However, their practical applications...


2021 ◽  
pp. 2002111
Author(s):  
Calen J. Leverant ◽  
Yifan Zhang ◽  
Maria A. Cordoba ◽  
Sin‐Yen Leo ◽  
Nilesh Charpota ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document