2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Sekson Sirisubtawee ◽  
Sanoe Koonprasert

We apply the G′/G2-expansion method to construct exact solutions of three interesting problems in physics and nanobiosciences which are modeled by nonlinear partial differential equations (NPDEs). The problems to which we want to obtain exact solutions consist of the Benny-Luke equation, the equation of nanoionic currents along microtubules, and the generalized Hirota-Satsuma coupled KdV system. The obtained exact solutions of the problems via using the method are categorized into three types including trigonometric solutions, exponential solutions, and rational solutions. The applications of the method are simple, efficient, and reliable by means of using a symbolically computational package. Applying the proposed method to the problems, we have some innovative exact solutions which are different from the ones obtained using other methods employed previously.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Yusuf Pandir ◽  
Halime Ulusoy

We firstly give some new functions called generalized hyperbolic functions. By the using of the generalized hyperbolic functions, new kinds of transformations are defined to discover the exact approximate solutions of nonlinear partial differential equations. Based on the generalized hyperbolic function transformation of the generalized KdV equation and the coupled equal width wave equations (CEWE), we find new exact solutions of two equations and analyze the properties of them by taking different parameter values of the generalized hyperbolic functions. We think that these solutions are very important to explain some physical phenomena.


1995 ◽  
Vol 6 (3) ◽  
pp. 265-286 ◽  
Author(s):  
O. V. Kaptsov

We introduce the concept of B-determining equations of a system of partial differential equations that generalize the defining equations of the symmetry groups. We show how this concept may be applied to obtain exact solutions of partial differential equations. The exposition is reasonable self-contained, and supplemented by examples of direct physical importance, chosen from fluid mechanics.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Hasan Bulut

The classification of exact solutions, including solitons and elliptic solutions, to the generalized equation by the complete discrimination system for polynomial method has been obtained. From here, we find some interesting results for nonlinear partial differential equations with generalized evolution.


Author(s):  
Changzheng Qu

AbstractThe generalized conditional symmetry method is applied to study the reduction to finite-dimensional dynamical systems and construction of exact solutions for certain types of nonlinear partial differential equations which have many physically significant applications in physics and related sciences. The exact solutions of the resulting equations are derived via the compatibility of the generalized conditional symmetries and the considered equations, which reduces to solving some systems of ordinary differential equations. For some unsolvable systems of ordinary differential equations, the dynamical behavior and qualitative properties are also considered. To illustrate that the approach has wide application, the exact solutions of a number of nonlinear partial differential equations are also given. The method used in this paper also provides a symmetry group interpretation to some known results in the literature which cannot be obtained by the nonclassical symmetry method due to Bluman and Cole.


Sign in / Sign up

Export Citation Format

Share Document