Photosynthesis in Eukaryotic Algae with Secondary Plastids

Author(s):  
Christian Wilhelm ◽  
Reimund Goss
2000 ◽  
Vol 12 (4) ◽  
pp. 418-424 ◽  
Author(s):  
James A. Raymond ◽  
Christian H. Fritsen

Macromolecular substances that cause pitting and other modifications of growing ice crystals were found to be associated with cyanobacterial mats, eukaryotic algae and mosses from Ross Island and the McMurdo Dry Valleys, Antarctica. Ice-pitting activities were largely retained by dialysis membranes with molecular weight cut-offs of up to 300 kDa. Unlike most aqueous solutes, the ice-active molecules were not excluded from the ice phase during freezing. The ice-pitting activities of each of the samples tested was destroyed by exposure to temperatures between 45 and 65°C, suggesting that they have a protein component. Ice-active substances were not found in cyanobacteria or mosses from temperate climates, but ice-activity was found to be associated with mosses from cold habitats in North America. Although the function of the ice-active substances is not known, their apparent confinement to cold environments suggests that they have a cryoprotective role.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jan Pyrih ◽  
Vojtěch Žárský ◽  
Justin D. Fellows ◽  
Christopher Grosche ◽  
Dorota Wloga ◽  
...  

Abstract Background Nbp35-like proteins (Nbp35, Cfd1, HCF101, Ind1, and AbpC) are P-loop NTPases that serve as components of iron-sulfur cluster (FeS) assembly machineries. In eukaryotes, Ind1 is present in mitochondria, and its function is associated with the assembly of FeS clusters in subunits of respiratory Complex I, Nbp35 and Cfd1 are the components of the cytosolic FeS assembly (CIA) pathway, and HCF101 is involved in FeS assembly of photosystem I in plastids of plants (chHCF101). The AbpC protein operates in Bacteria and Archaea. To date, the cellular distribution of these proteins is considered to be highly conserved with only a few exceptions. Results We searched for the genes of all members of the Nbp35-like protein family and analyzed their targeting sequences. Nbp35 and Cfd1 were predicted to reside in the cytoplasm with some exceptions of Nbp35 localization to the mitochondria; Ind1was found in the mitochondria, and HCF101 was predicted to reside in plastids (chHCF101) of all photosynthetically active eukaryotes. Surprisingly, we found a second HCF101 paralog in all members of Cryptista, Haptista, and SAR that was predicted to predominantly target mitochondria (mHCF101), whereas Ind1 appeared to be absent in these organisms. We also identified a few exceptions, as apicomplexans possess mHCF101 predicted to localize in the cytosol and Nbp35 in the mitochondria. Our predictions were experimentally confirmed in selected representatives of Apicomplexa (Toxoplasma gondii), Stramenopila (Phaeodactylum tricornutum, Thalassiosira pseudonana), and Ciliophora (Tetrahymena thermophila) by tagging proteins with a transgenic reporter. Phylogenetic analysis suggested that chHCF101 and mHCF101 evolved from a common ancestral HCF101 independently of the Nbp35/Cfd1 and Ind1 proteins. Interestingly, phylogenetic analysis supports rather a lateral gene transfer of ancestral HCF101 from bacteria than its acquisition being associated with either α-proteobacterial or cyanobacterial endosymbionts. Conclusion Our searches for Nbp35-like proteins across eukaryotic lineages revealed that SAR, Haptista, and Cryptista possess mitochondrial HCF101. Because plastid localization of HCF101 was only known thus far, the discovery of its mitochondrial paralog explains confusion regarding the presence of HCF101 in organisms that possibly lost secondary plastids (e.g., ciliates, Cryptosporidium) or possess reduced nonphotosynthetic plastids (apicomplexans).


2016 ◽  
Author(s):  
Adam J. Campbell ◽  
Betzalel Massarano ◽  
Edwin D. Waddington ◽  
Stephen G. Warren

Abstract. During the Neoproterozoic, Earth experienced several climate excursions of extreme cold, often referred to as the Snowball Earth events. During these periods, thick flowing ice, referred to as sea glaciers, covered the entire planet’s oceans. In addition, there is evidence that photosynthetic eukaryotic algae survived during these periods. With thick sea glaciers covering the oceans, it is uncertain where these organisms survived. One hypothesis is that these algae survived in marine embayments hydrologically connected to the global ocean, where the flow of sea glacier could be resisted. In order for an embayment to act as a refugium, the invading sea glacier must not completely penetrate the embayment. Recent studies have shown that straight-sided, marine embayments could have prevented full sea-glacier penetration under a narrow range of climate conditions suitable for the Snowball Earth events. Here we test whether promontories, i.e. headlands emerging from a side shoreline, could further restrict sea-glacier flow. We use an ice-flow model, suitable for floating ice, to determine the flow of an invading sea glacier. We show that promontories can expand the range of climate conditions allowing refugia by resisting the flow of invading sea glaciers.


Sign in / Sign up

Export Citation Format

Share Document