cyanobacterial mats
Recently Published Documents


TOTAL DOCUMENTS

176
(FIVE YEARS 24)

H-INDEX

34
(FIVE YEARS 1)

2021 ◽  
Vol 18 (24) ◽  
pp. 6501-6516
Author(s):  
Alice E. Webb ◽  
Didier M. de Bakker ◽  
Karline Soetaert ◽  
Tamara da Costa ◽  
Steven M. A. C. van Heuven ◽  
...  

Abstract. Coral reefs are declining worldwide. The abundance of corals has decreased alongside a rise of filter feeders, turf, and algae in response to intensifying human pressures. This shift in prevalence of functional groups alters the biogeochemical processes in tropical water ecosystems, thereby influencing reef functioning. An urgent challenge is to understand the functional consequences of these shifts to develop suitable management strategies that aim at preserving the biological functions of reefs. Here, we quantify biogeochemical processes supporting key reef functions (i.e. net community calcification (NCC) and production (NCP) and nutrient recycling) in situ for five different benthic assemblages currently dominating shallow degraded Caribbean reef habitats. To this end, a transparent custom-made enclosure was placed over communities dominated by either one of five functional groups – coral, turf and macroalgae, bioeroding sponges, cyanobacterial mats, or sand – to determine chemical fluxes between these communities and the overlying water, during both day and night. To account for the simultaneous influence that distinct biogeochemical processes have on measured variables, the rates were then derived by solving a model consisting of differential equations describing the contribution of each process to the measured chemical fluxes. Inferred rates were low compared to those known for reef flats worldwide. Reduced accretion potential was recorded, with negative or very modest net community calcification rates for all communities. Net production during the day was also low, suggesting limited accumulation of biomass through photosynthesis and remineralisation of organic matter at night was relatively high in comparison, resulting in net heterotrophy over the survey period for most communities. Estimated recycling processes (i.e. nitrification and denitrification) were high but did not fully counterbalance nutrient release from aerobic mineralisation, rendering all substrates sources of nitrogen. Results suggest similar directions and magnitudes of key biogeochemical processes of distinct communities on this shallow Curaçaoan reef. We infer that the amount and type of organic matter released by abundant algal turfs and cyanobacterial mats on this reef likely enhances heterotroph activity and stimulates the proliferation of less diverse copiotrophic microbial populations, rendering the studied reef net heterotrophic and drawing the biogeochemical “behaviour” of distinct communities closer to each other.


mSystems ◽  
2021 ◽  
Author(s):  
Sharon L. Grim ◽  
Alexander A. Voorhies ◽  
Bopaiah A. Biddanda ◽  
Sunit Jain ◽  
Stephen C. Nold ◽  
...  

Cyanobacterial mats are dense communities of microorganisms that contain photosynthetic cyanobacteria along with a host of other bacterial species that play important yet still poorly understood roles in this ecosystem. Although such cyanobacterial mats were critical agents of Earth’s biological and chemical evolution through geological time, little is known about how they function under the low-oxygen conditions that characterized most of their natural history.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amanda K. Ford ◽  
Petra M. Visser ◽  
Maria J. van Herk ◽  
Evelien Jongepier ◽  
Victor Bonito

AbstractBenthic cyanobacterial mats (BCMs) are becoming increasingly common on coral reefs. In Fiji, blooms generally occur in nearshore areas during warm months but some are starting to prevail through cold months. Many fundamental knowledge gaps about BCM proliferation remain, including their composition and how they influence reef processes. This study examined a seasonal BCM bloom occurring in a 17-year-old no-take inshore reef area in Fiji. Surveys quantified the coverage of various BCM-types and estimated the biomass of key herbivorous fish functional groups. Using remote video observations, we compared fish herbivory (bite rates) on substrate covered primarily by BCMs (> 50%) to substrate lacking BCMs (< 10%) and looked for indications of fish (opportunistically) consuming BCMs. Samples of different BCM-types were analysed by microscopy and next-generation amplicon sequencing (16S rRNA). In total, BCMs covered 51 ± 4% (mean ± s.e.m) of the benthos. Herbivorous fish biomass was relatively high (212 ± 36 kg/ha) with good representation across functional groups. Bite rates were significantly reduced on BCM-dominated substratum, and no fish were unambiguously observed consuming BCMs. Seven different BCM-types were identified, with most containing a complex consortium of cyanobacteria. These results provide insight into BCM composition and impacts on inshore Pacific reefs.


2021 ◽  
Author(s):  
Alice E. Webb ◽  
Didier M. de Bakker ◽  
Karline Soetaert ◽  
Tamara da Costa ◽  
Steven M. A. C. van Heuven ◽  
...  

Abstract. Coral reefs are declining worldwide. The abundance of corals has decreased alongside the rise of filter feeders, turf and algae in response to intensifying human pressures. This shift in prevalence of functional groups alters the biogeochemical processes in tropical water ecosystems, thereby influencing reef biological functions. An urgent challenge is to understand the functional consequences of these shifts in order to develop suitable management strategies that aim at preserving the biological functions of reefs.Here, we quantify biogeochemical processes supporting key reef functions (i.e. net community calcification (NCC) and production (NCP), and nutrient recycling) in situ for five different benthic assemblages currently dominating shallow degraded Caribbean reef habitats. To this end, a custom made tent was placed over communities dominated by either one of five functional groups: coral, turf and macroalgae, bioeroding sponges, cyanobacterial mats or sand, to determine chemical fluxes between these communities and the overlying water, during both day and night. Measured fluxes were then translated into responsible biogeochemical processes by solving a system of differential equations describing the contribution of each process to the measured chemical fluxes. Estimated processes are low compared to those known for reef flats worldwide. No real gain in primary habitat is recorded, with negative or very modest net community calcification rates by all communities. Similarly, net production of biomass through photosynthesis is relatively low during the day and remineralisation of organic matter at night is relatively high in comparison, resulting in net heterotrophy over the survey period by most communities. Estimated recycling through nitrification and denitrification are high but denitrification does not fully counterbalance nutrient release from aerobic mineralisation, rendering all substrates sources of nitrogen. A multivariate pairwise analysis revealed that there is no significant difference between processes occurring on any of the assemblages, suggesting functional homogenisation between distinct substrate types. We infer that the amount and type of organic matter released by abundant algal turfs and cyanobacterial mats on this reef, likely enhances heterotroph activity, and stimulates the proliferation of less diverse copiotrophic microbial populations, rendering the studied reef net heterotrophic and the overall biogeochemical ‘behaviour’ similar regardless of substrate type.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Ming-Xiang Mei ◽  
Muhammad Riaz ◽  
Zhen-Wu Zhang ◽  
Qing-Fen Meng ◽  
Yuan Hu

AbstractAs a type of non-laminated microbial carbonates, dendrolites are dominated by isolated dendritic clusters of calcimicrobes and are distinct from stromatolites and thrombolites. The dendrolites in the upper part of the Miaolingian Zhangxia Formation at Anjiazhuang section in Feicheng city of Shandong Province, China, provide an excellent example for further understanding of both growth pattern and forming mechanism of dendrolites. These dendrolites are featured by sedimentary fabrics and composition of calcified microbes as follows. (1) The strata of massive limestones, composed of dendrolites with thickness of more than one hundred meters, intergrade with thick-bedded to massive leiolites, formimg the upper part of a third-order depositional sequence that constitutes a forced regressive systems tract. (2) A centimeter-sized bush-like fabric (shrub) typically produced by calcified microbes is similar to the mesoclot in thrombolites but distinctive from clotted fabrics of thrombolites. This bush-like fabric is actually constituted by diversified calcified microbes like the modern shrub as a result of gliding mobility of filamentous cyanobacteria. Such forms traditionally include: the Epiphyton group (which actually has uncertain biological affinity), the Hedstroemia group which closely resembles modern rivulariacean cyanobacteria, and the possible calcified cyanobacteria of the Lithocodium–Bacinella group. (3) Significantly, dense micrite of leiolite is associated with sponge fossils and burrows, and is covered by microstromatolite. The Lithocodium–Bacinella group is a controversial group of interpreted calcified cyanobacteria in the Cambrian that has also been widely observed and described in the Mesozoic. Therefore, dendrolites with symbiosis of leiolites in the studied section provide an extraordinary example for further understanding of growing style of bush-like fabrics (shrubs) of the dendrolites dominated by cyanobacterial mats. Furthermore, the present research provides some useful thinking approaches for better understanding of the history of the Early Paleozoic skeletal reefs and the microbe–metazoan transitions of the Cambrian.


2020 ◽  
Vol 9 (1) ◽  
pp. 62
Author(s):  
Aysha Kamran ◽  
Kathrin Sauter ◽  
Andreas Reimer ◽  
Theresa Wacker ◽  
Joachim Reitner ◽  
...  

(1) Background: Microbial communities in terrestrial, calcifying high-alkaline springs are not well understood. In this study, we investigate the structure and composition of microbial mats in ultrabasic (pH 10–12) serpentinite springs of the Voltri Massif (Italy). (2) Methods: Along with analysis of chemical and mineralogical parameters, environmental DNA was extracted and subjected to analysis of microbial communities based upon next-generation sequencing. (3) Results: Mineral precipitation and microbialite formation occurred, along with mat formation. Analysis of the serpentinite spring microbial community, based on Illumina sequencing of 16S rRNA amplicons, point to the relevance of alkaliphilic cyanobacteria, colonizing carbonate buildups. Cyanobacterial groups accounted for up to 45% of all retrieved sequences; 3–4 taxa were dominant, belonging to the filamentous groups of Leptolyngbyaceae, Oscillatoriales, and Pseudanabaenaceae. The cyanobacterial community found at these sites is clearly distinct from creek water sediment, highlighting their specific adaptation to these environments.


Nitrogen ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 167-189
Author(s):  
Daniel M. Alongi

Nitrogen (N) cycling in mangroves is complex, with rapid turnover of low dissolved N concentrations, but slow turnover of particulate N. Most N is stored in soils. The largest sources of N are nearly equal amounts of mangrove and benthic microalgal primary production. Dissolved N fluxes between the forests and tidal waters show net uptake, indicating N conservation. N2-fixation is underestimated as rapid rates measured on tree stems, aboveground roots and cyanobacterial mats cannot currently be accounted for at the whole-forest scale due to their extreme patchiness and the inability to extrapolate beyond a localized area. Net immobilization of NH4+ is the largest ecosystem flux, indicating N retention. Denitrification is the largest loss of N, equating to 35% of total N input. Burial equates to about 29% of total inputs and is the second largest loss of N. Total inputs slightly exceed total outputs, currently suggesting net N balance in mangroves. Mangrove PON export equates to ≈95% of PON export from the world’s tropical rivers, but only 1.5% of the entire world’s river discharge. Mangrove N2O emissions, denitrification, and burial contribute 0.4%, 0.5–2.0% and 6%, respectively, to the global coastal ocean, which are disproportionate to their small worldwide area.


2020 ◽  
Vol 96 (11) ◽  
Author(s):  
Agnieszka Pajdak-Stós ◽  
Wojciech Fiałkowski ◽  
Edyta Fiałkowska

ABSTRACT Cyanobacteria can protect themselves through limited dispersion and by increasing the compactness of the mucilage-covered cyanobacterial mat as well as by producing sheaths covering their trichomes. These features have been used in research to measure their degree of inducible defence. The influence of the presence of the rotifers Lecane inermis on the effectiveness of Phormidium sp. (Ph2) cyanobacterium defence was investigated. Experiments were conducted on the ciliates Pseudomicrothorax dubius and Furgasonia blochmanni, specialised in the ingestion of filamentous cyanobacteria. The most compact were cyanobacterial mats that were subjected exclusively to ciliates and the most dispersed were mats in the presence of rotifers alone. The presence of rotifers feeding on cyanobacterial mucilage led to the decreased effectiveness of the defence in two ways, by increasing the dispersion of cyanobacterial trichomes, thus loosening the cyanobacterial mat, and through the ingestion of the exopolysaccharide material covering the trichomes. As a result, in the presence of rotifers and the high density of ciliates, almost all the trichomes were removed. Moreover, in comparison with other treatments, a higher number of ciliates and rotifers remained active until the end of the experiments. This is the first report to show how rotifers can weaken the defence of cyanobacteria.


Sign in / Sign up

Export Citation Format

Share Document