eukaryotic algae
Recently Published Documents


TOTAL DOCUMENTS

136
(FIVE YEARS 24)

H-INDEX

32
(FIVE YEARS 2)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Marie Catherine Sforna ◽  
Corentin C. Loron ◽  
Catherine F. Demoulin ◽  
Camille François ◽  
Yohan Cornet ◽  
...  

AbstractThe acquisition of photosynthesis is a fundamental step in the evolution of eukaryotes. However, few phototrophic organisms are unambiguously recognized in the Precambrian record. The in situ detection of metabolic byproducts in individual microfossils is the key for the direct identification of their metabolisms. Here, we report a new integrative methodology using synchrotron-based X-ray fluorescence and absorption. We evidence bound nickel-geoporphyrins moieties in low-grade metamorphic rocks, preserved in situ within cells of a ~1 Gyr-old multicellular eukaryote, Arctacellularia tetragonala. We identify these moieties as chlorophyll derivatives, indicating that A. tetragonala was a phototrophic eukaryote, one of the first unambiguous algae. This new approach, applicable to overmature rocks, creates a strong new proxy to understand the evolution of phototrophy and diversification of early ecosystems.


Author(s):  
Beatrycze Nowicka

Abstract Heavy metals is a collective term describing metals and metalloids with a density higher than 5 g/cm3. Some of them are essential micronutrients; others do not play a positive role in living organisms. Increased anthropogenic emissions of heavy metal ions pose a serious threat to water and land ecosystems. The mechanism of heavy metal toxicity predominantly depends on (1) their high affinity to thiol groups, (2) spatial similarity to biochemical functional groups, (3) competition with essential metal cations, (4) and induction of oxidative stress. The antioxidant response is therefore crucial for providing tolerance to heavy metal-induced stress. This review aims to summarize the knowledge of heavy metal toxicity, oxidative stress and antioxidant response in eukaryotic algae. Types of ROS, their formation sites in photosynthetic cells, and the damage they cause to the cellular components are described at the beginning. Furthermore, heavy metals are characterized in more detail, including their chemical properties, roles they play in living cells, sources of contamination, biochemical mechanisms of toxicity, and stress symptoms. The following subchapters contain the description of low-molecular-weight antioxidants and ROS-detoxifying enzymes, their properties, cellular localization, and the occurrence in algae belonging to different clades, as well as the summary of the results of the experiments concerning antioxidant response in heavy metal-treated eukaryotic algae. Other mechanisms providing tolerance to metal ions are briefly outlined at the end.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tianyu Bai ◽  
Lin Guo ◽  
Mingyu Xu ◽  
Lirong Tian

Photosystem I (PSI) is one of the most efficient photoelectric apparatus in nature, converting solar energy into condensed chemical energy with almost 100% quantum efficiency. The ability of PSI to attain such high conversion efficiency depends on the precise spatial arrangement of its protein subunits and binding cofactors. The PSI structures of oxygenic photosynthetic organisms, namely cyanobacteria, eukaryotic algae, and plants, have undergone great variation during their evolution, especially in eukaryotic algae and vascular plants for which light-harvesting complexes (LHCI) developed that surround the PSI core complex. A detailed understanding of the functional and structural properties of this PSI-LHCI is not only an important foundation for understanding the evolution of photosynthetic organisms but is also useful for designing future artificial photochemical devices. Recently, the structures of such PSI-LHCI supercomplexes from red alga, green alga, diatoms, and plants were determined by X-ray crystallography and single-particle cryo-electron microscopy (cryo-EM). These findings provide new insights into the various structural adjustments of PSI, especially with respect to the diversity of peripheral antenna systems arising via evolutionary processes. Here, we review the structural details of the PSI tetramer in cyanobacteria and the PSI-LHCI and PSI-LHCI-LHCII supercomplexes from different algae and plants, and then discuss the diversity of PSI-LHCI in oxygenic photosynthesis organisms.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1550
Author(s):  
István Bácsi ◽  
Sándor Gonda ◽  
Zsuzsanna Nemes-Kókai ◽  
Viktória B-Béres ◽  
Gábor Vasas

Increased proliferation of algae is a current problem in natural and artificial water bodies. Controlling nutrients is the most sustainable treatment of increased algal proliferation, however in certain cases, it is not sufficiently available, or it does not provide results fast enough. Chemicals derived from natural sources, which could be effective in low concentrations and are biodegradable, may have an advantage over conventional chemical treatments. The main aim of the present study was to investigate the anti-cyanobacterial and anti-algal properties of allyl-isothiocyanate-containing essential oil produced from horseradish roots with a complex approach of the topic: on laboratory strains of cyanobacteria and eukaryotic algae, on microcosms containing natural phytoplankton assemblages, and on semi-natural biofilms. The results show that acute treatment can significantly reduce the viability of all the tested cyanobacteria and eukaryotic algae. Results of microcosm experiments with natural phytoplankton assemblages show that horseradish essential oil from 7.1 × 10−6% (v/v) is applicable to push back phytoplankton proliferation even in natural assemblages. The individual number in the biofilm was dropped down to one-fifth of the original individual number, so 7.1 × 10−6% (v/v) and higher concentration of the essential oil can be considered as a successful treatment against biofouling.


2021 ◽  
Vol 7 (24) ◽  
pp. eabg4102
Author(s):  
Sergio A. Muñoz-Gómez ◽  
Martin Kreutz ◽  
Sebastian Hess

Oxygenic photosynthesizers (cyanobacteria and eukaryotic algae) have repeatedly become endosymbionts throughout evolution. In contrast, anoxygenic photosynthesizers (e.g., purple bacteria) are exceedingly rare as intracellular symbionts. Here, we report on the morphology, ultrastructure, lifestyle, and metagenome of the only “purple-green” eukaryote known. The ciliate Pseudoblepharisma tenue harbors green algae and hundreds of genetically reduced purple bacteria. The latter represent a new candidate species of the Chromatiaceae that lost known genes for sulfur dissimilation. The tripartite consortium is physiologically complex because of the versatile energy metabolism of each partner but appears to be ecologically specialized as it prefers hypoxic sediments. The emergent niche of this complex symbiosis is predicted to be a partial overlap of each partners’ niches and may be largely defined by anoxygenic photosynthesis and possibly phagotrophy. This purple-green ciliate thus represents an extraordinary example of how symbiosis merges disparate physiologies and allows emergent consortia to create novel ecological niches.


2021 ◽  
Vol 288 ◽  
pp. 104411
Author(s):  
Paweł Filipiak ◽  
Linda E. Graham ◽  
Zuzanna Wawrzyniak ◽  
Marcelina Kondas

2021 ◽  
Author(s):  
Chenyi Fei ◽  
Alexandra T. Wilson ◽  
Niall M. Mangan ◽  
Ned S. Wingreen ◽  
Martin C. Jonikas

AbstractMany photosynthetic organisms enhance the performance of their CO2-fixing enzyme Rubisco by operating a CO2-concentrating mechanism (CCM). Most CCMs in eukaryotic algae supply concentrated CO2 to Rubisco in an organelle called the pyrenoid. Ongoing efforts seek to engineer an algal CCM into crops that lack a CCM to increase yields. To advance our basic understanding of the algal CCM, we develop a chloroplast-scale reaction-diffusion model to analyze the efficacy and the energy efficiency of the CCM in the green alga Chlamydomonas reinhardtii. We show that achieving an effective and energetically efficient CCM requires a physical barrier such as thylakoid stacks or a starch sheath to reduce CO2 leakage out of the pyrenoid matrix. Our model provides insights into the relative performance of two distinct inorganic carbon uptake strategies: at air-level CO2, a CCM can operate effectively by taking up passively diffusing external CO2 and catalyzing its conversion to HCO3−, which is then trapped in the chloroplast; however, at lower external CO2 levels, effective CO2 concentration requires active import of HCO3−. We also find that proper localization of carbonic anhydrases can reduce futile carbon cycling between CO2 and HCO3−, thus enhancing CCM performance. We propose a four-step engineering path that increases predicted CO2 saturation of Rubisco up to seven-fold at a theoretical cost of only 1.5 ATP per CO2 fixed. Our system-level analysis establishes biophysical principles underlying the CCM that are broadly applicable to other algae and provides a framework to guide efforts to engineer an algal CCM into land plants.Significance StatementEukaryotic algae mediate approximately one-third of CO2 fixation in the global carbon cycle. Many algae enhance their CO2-fixing ability by operating a CO2-concentrating mechanism (CCM). Our model of the algal CCM lays a solid biophysical groundwork for understanding its operation. The model’s consistency with experimental observations supports existing hypotheses about the operating principles of the algal CCM and the functions of its component proteins. We provide a quantitative estimate of the CCM’s energy efficiency and compare the performance of two distinct CO2 assimilation strategies under varied conditions. The model offers a quantitative framework to guide the engineering of an algal CCM into land plants and supports the feasibility of this endeavor.


Author(s):  
A. Reid ◽  
F. Buchanan ◽  
M. Julius ◽  
P. J. Walsh

 Diatoms are unicellular eukaryotic algae that have a distinctive siliceous cell wall (frustule) with unique architectures. These frustules are a naturally derived biomaterial, which can be chemically modified and may have potential in bone tissue engineering applications.


2020 ◽  
Vol 22 (1) ◽  
pp. 342
Author(s):  
Ginga Shimakawa ◽  
Ayaka Kohara ◽  
Chikahiro Miyake

In eukaryotic algae, respiratory O2 uptake is enhanced after illumination, which is called light-enhanced respiration (LER). It is likely stimulated by an increase in respiratory substrates produced during photosynthetic CO2 assimilation and function in keeping the metabolic and redox homeostasis in the light in eukaryotic cells, based on the interactions among the cytosol, chloroplasts, and mitochondria. Here, we first characterize LER in photosynthetic prokaryote cyanobacteria, in which respiration and photosynthesis share their metabolisms and electron transport chains in one cell. From the physiological analysis, the cyanobacterium Synechocystis sp. PCC 6803 performs LER, similar to eukaryotic algae, which shows a capacity comparable to the net photosynthetic O2 evolution rate. Although the respiratory and photosynthetic electron transports share the interchain, LER was uncoupled from photosynthetic electron transport. Mutant analyses demonstrated that LER is motivated by the substrates directly provided by photosynthetic CO2 assimilation, but not by glycogen. Further, the light-dependent activation of LER was observed even with exogenously added glucose, implying a regulatory mechanism for LER in addition to the substrate amounts. Finally, we discuss the physiological significance of the large capacity of LER in cyanobacteria and eukaryotic algae compared to those in plants that normally show less LER.


2020 ◽  
Vol 21 (12) ◽  
pp. 1229-1241 ◽  
Author(s):  
Meng-Lu Liu ◽  
Wei Su ◽  
Zheng-Xing Guan ◽  
Dan Zhang ◽  
Wei Chen ◽  
...  

: The chloroplast is a type of subcellular organelle of green plants and eukaryotic algae, which plays an important role in the photosynthesis process. Since the function of a protein correlates with its location, knowing its subchloroplast localization is helpful for elucidating its functions. However, due to a large number of chloroplast proteins, it is costly and time-consuming to design biological experiments to recognize subchloroplast localizations of these proteins. To address this problem, during the past ten years, twelve computational prediction methods have been developed to predict protein subchloroplast localization. This review summarizes the research progress in this area. We hope the review could provide important guide for further computational study on protein subchloroplast localization.


Sign in / Sign up

Export Citation Format

Share Document