BMC Ecology and Evolution
Latest Publications


TOTAL DOCUMENTS

224
(FIVE YEARS 224)

H-INDEX

1
(FIVE YEARS 1)

Published By Springer Science And Business Media LLC

2730-7182

2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Van Vien Pham ◽  
Christian Ammer ◽  
Peter Annighöfer ◽  
Steffi Heinrichs

Abstract Background The ability of overstory tree species to regenerate successfully is important for the preservation of tree species diversity and its associated flora and fauna. This study investigated forest regeneration dynamics in the Cat Ba National Park, a biodiversity hotspot in Vietnam. Data was collected from 90 sample plots (500 m2) and 450 sub-sample plots (25 m2) in regional limestone forests. We evaluated the regeneration status of tree species by developing five ratios relating overstory and regeneration richness and diversity. By examining the effect of environmental factors on these ratios, we aimed to identify the main drivers for maintaining tree species diversity or for potential diversity gaps between the regeneration and the overstory layer. Our results can help to increase the understanding of regeneration patterns in tropical forests of Southeast Asia and to develop successful conservation strategies. Results We found 97 tree species in the regeneration layer compared to 136 species in the overstory layer. The average regeneration density was 3764 ± 1601 per ha. Around 70% of the overstory tree species generated offspring. According to the International Union for Conservation of Nature’s Red List, only 36% of threatened tree species were found in the regeneration layer. A principal component analysis provided evidence that the regeneration of tree species was slightly negatively correlated to terrain factors (percentage of rock surface, slope) and soil properties (cation exchange capacity, pH, humus content, soil moisture, soil depth). Contrary to our expectations, traces of human impact and the prevailing light conditions (total site factor, gap fraction, openness, indirect site factor, direct site factor) had no influence on regeneration density and composition, probably due to the small gradient in light availability. Conclusion We conclude that the tree species richness in Cat Ba National Park appears to be declining at present. We suggest similar investigations in other biodiversity hotspots to learn whether the observed trend is a global phenomenon. In any case, a conservation strategy for the threatened tree species in the Cat Ba National Park needs to be developed if tree species diversity is to be maintained.



2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Adam N. Zeeman ◽  
Isabel M. Smallegange ◽  
Emily Burdfield Steel ◽  
Astrid T. Groot ◽  
Kathryn A. Stewart

Abstract Background Under strong sexual selection, certain species evolve distinct intrasexual, alternative reproductive tactics (ARTs). In many cases, ARTs can be viewed as environmentally-cued threshold traits, such that ARTs coexist if their relative fitness alternates over the environmental cue gradient. Surprisingly, the chemical ecology of ARTs has been underexplored in this context. To our knowledge, no prior study has directly quantified pheromone production for ARTs in a male-polymorphic species. Here, we used the bulb mite—in which males are either armed fighters that kill conspecifics, or unarmed scramblers (which have occasionally been observed to induce mating behavior in other males)—as a model system to gain insight into the role of pheromones in the evolutionary maintenance of ARTs. Given that scramblers forgo investment into weaponry, we tested whether scramblers produce higher quantities of the putative female sex-pheromone α-acaridial than fighters, which would improve the fitness of the scrambler phenotype through female mimicry by allowing avoidance of aggression from competitors. To this end, we sampled mites from a rich and a poor nutritional environment and quantified their production of α-acaridial through gas chromatography analysis. Results We found a positive relationship between pheromone production and body size, but males exhibited a steeper slope in pheromone production with increasing size than females. Females exhibited a higher average pheromone production than males. We found no significant difference in slope of pheromone production over body size between fighters and scramblers. However, scramblers reached larger body sizes and higher pheromone production than fighters, providing some evidence for a potential female mimic strategy adopted by large scramblers. Pheromone production was significantly higher in mites from the rich nutritional environment than the poor environment. Conclusion Further elucidation of pheromone functionality in bulb mites, and additional inter- and intrasexual comparisons of pheromone profiles are needed to determine if the observed intersexual and intrasexual differences in pheromone production are adaptive, if they are a by-product of allometric scaling, or diet-mediated pheromone production under weak selection. We argue chemical ecology offers a novel perspective for research on ARTs and other complex life-history traits.



2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Violette Chiara ◽  
Alberto Velando ◽  
Sin-Yeon Kim

Abstract Background Sexual signals produced by males play a central role in sexual selection, but the relationship between these traits and the quality of the bearer are often ambiguous. Secondary sexual traits may represent genetic quality of the bearer, resulting in positive relationships with physiological state, or may be costly to produce, showing trade-off with physiological state. A number of studies have explored the relationships between secondary sexual traits and other functional traits, but few have studied their fitness consequences. We studied the link between diverse physiological traits and both morphological and behavioural sexual traits and examined how their interplay influences offspring viability in the three-spined stickleback. Results Male sticklebacks showing nest building and courtship behaviour were smaller than those not investing in reproductive activities. There was no evidence that the expression of red nuptial colouration and the quality of courtship behaviour of males are positively related to their metabolic rates, swim ability, oxidative damage and mtDNA copy number. However, individuals showing larger red nuptial colour areas had higher levels of oxidative DNA damage in their sperm. Male courtship behaviour and aggressiveness, but not red colour area, were good predictors of offspring hatching and survival. Conclusions Our results suggest that, in our study population at the southern edge of the species’ distribution, sexual colouration of male sticklebacks was not a good indicator of their body state, but both courtship quality and aggressiveness during the courtship are reliable cues of their gamete quality, influencing the viability of their offspring. Thus, females that choose mates based on their courtship behaviour will have high fitness. In the study population, which represents a fast pace-of-life with high reproductive rate and short lifespan, sexual ornaments of males may not honestly signal their physiological and physical state because they invest at maximum in a single reproductive season despite high costs.



2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Quentin Guignard ◽  
Jeremy D. Allison ◽  
Bernard Slippers

Abstract Background Visual opsins are expressed in the compound eyes and ocelli of insects and enable light detection. Three distinct phylogenetic groups of visual opsins are found in insects, named long (LW), short (SW) and ultraviolet (UV) wavelength sensitive opsins. Recently, the LW group was found to be duplicated into the LW2b and the LW2a opsins. The expression of LW2b opsins is ocelli specific in some insects (e.g., bees, cricket, scorpion flies), but the gene was not found in other orders possessing three or less ocelli (e.g., dragonflies, beetles, moths, bugs). In flies, two LW2b homologs have been characterised, with one expressed in the ocelli and the other in the compound eyes. To date, it remains unclear which evolutionary forces have driven gains and losses of LW opsins in insects. Here we take advantage of the recent rapid increase in available sequence data (i.e., from insect genomes, targeted PCR amplification, RNAseq) to characterize the phylogenetic relationships of 1000 opsin sequences in 18 orders of Insects. The resulting phylogeny discriminates between four main groups of opsins, and onto this phylogeny we mapped relevant morphological and life history traits. Results Our results demonstrate a conserved LW2b opsin only present in insects with three ocelli. Only two groups (Brachycera and Odonata) possess more than one LW2b opsin, likely linked to their life history. In flies, we hypothesize that the duplication of the LW2b opsin occurred after the transition from aquatic to terrestrial larvae. During this transition, higher flies (Brachycera) lost a copy of the LW2a opsin, still expressed and duplicated in the compound eyes of lower flies (Nematocera). In higher flies, the LW2b opsin has been duplicated and expressed in the compound eyes while the ocelli and the LW2b opsin were lost in lower flies. In dragonflies, specialisation of flight capabilities likely drove the diversification of the LW2b visual opsins. Conclusion The presence of the LW2b opsin in insects possessing three ocelli suggests a role in specific flight capabilities (e.g., stationary flight). This study provides the most complete view of the evolution of visual opsin genes in insects yet, and provides new insight into the influence of ocelli and life history traits on opsin evolution in insects.



2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Goran Bozinovic ◽  
Zuying Feng ◽  
Damian Shea ◽  
Marjorie F. Oleksiak

Abstract Background The teleost fish Fundulus heteroclitus inhabit estuaries heavily polluted with persistent and bioaccumulative chemicals. While embryos of parents from polluted sites are remarkably resistant to toxic sediment and develop normally, embryos of parents from relatively clean estuaries, when treated with polluted sediment extracts, are developmentally delayed, displaying deformities characteristic of pollution-induced embryotoxicity. To gain insight into parental effects on sensitive and resistant phenotypes during late organogenesis, we established sensitive, resistant, and crossed embryo families using five female and five male parents from relatively clean and predominantly PAH-polluted estuaries each, measured heart rates, and quantified individual embryo expression of 179 metabolic genes. Results Pollution-induced embryotoxicity manifested as morphological deformities, significant developmental delays, and altered cardiac physiology was evident among sensitive embryos resulting from crosses between females and males from relatively clean estuaries. Significantly different heart rates among several geographically unrelated populations of sensitive, resistant, and crossed embryo families during late organogenesis and pre-hatching suggest site-specific adaptive cardiac physiology phenotypes relative to pollution exposure. Metabolic gene expression patterns (32 genes, 17.9%, at p < 0.05; 11 genes, 6.1%, at p < 0.01) among the embryo families indicate maternal pollutant deposition in the eggs and parental effects on gene expression and metabolic alterations. Conclusion Heart rate differences among sensitive, resistant, and crossed embryos is a reliable phenotype for further explorations of adaptive mechanisms. While metabolic gene expression patterns among embryo families are suggestive of parental effects on several differentially expressed genes, a definitive adaptive signature and metabolic cost of resistant phenotypes is unclear and shows unexpected sensitive-resistant crossed embryo expression profiles. Our study highlights physiological and metabolic gene expression differences during a critical embryonic stage among pollution sensitive, resistant, and crossed embryo families, which may contribute to underlying resistance mechanisms observed in natural F. heteroclitus populations living in heavily contaminated estuaries.



2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Monique Aouad ◽  
Jean-Pierre Flandrois ◽  
Frédéric Jauffrit ◽  
Manolo Gouy ◽  
Simonetta Gribaldo ◽  
...  

Abstract Background The recent rise in cultivation-independent genome sequencing has provided key material to explore uncharted branches of the Tree of Life. This has been particularly spectacular concerning the Archaea, projecting them at the center stage as prominently relevant to understand early stages in evolution and the emergence of fundamental metabolisms as well as the origin of eukaryotes. Yet, resolving deep divergences remains a challenging task due to well-known tree-reconstruction artefacts and biases in extracting robust ancient phylogenetic signal, notably when analyzing data sets including the three Domains of Life. Among the various strategies aimed at mitigating these problems, divide-and-conquer approaches remain poorly explored, and have been primarily based on reconciliation among single gene trees which however notoriously lack ancient phylogenetic signal. Results We analyzed sub-sets of full supermatrices covering the whole Tree of Life with specific taxonomic sampling to robustly resolve different parts of the archaeal phylogeny in light of their current diversity. Our results strongly support the existence and early emergence of two main clades, Cluster I and Cluster II, which we name Ouranosarchaea and Gaiarchaea, and we clarify the placement of important novel archaeal lineages within these two clades. However, the monophyly and branching of the fast evolving nanosized DPANN members remains unclear and worth of further study. Conclusions We inferred a well resolved rooted phylogeny of the Archaea that includes all recently described phyla of high taxonomic rank. This phylogeny represents a valuable reference to study the evolutionary events associated to the early steps of the diversification of the archaeal domain. Beyond the specifics of archaeal phylogeny, our results demonstrate the power of divide-and-conquer approaches to resolve deep phylogenetic relationships, which should be applied to progressively resolve the entire Tree of Life.



2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mark D. Johnson ◽  
Mohamed Fokar ◽  
Robert D. Cox ◽  
Matthew A. Barnes

Abstract Background Airborne environmental DNA (eDNA) research is an emerging field that focuses on the detection of species from their genetic remnants in the air. The majority of studies into airborne eDNA of plants has until now either focused on single species detection, specifically only pollen, or human health impacts, with no previous studies surveying an entire plant community through metabarcoding. We therefore conducted an airborne eDNA metabarcoding survey and compared the results to a traditional plant community survey. Results Over the course of a year, we conducted two traditional transect-based visual plant surveys alongside an airborne eDNA sampling campaign on a short-grass rangeland. We found that airborne eDNA detected more species than the traditional surveying method, although the types of species detected varied based on the method used. Airborne eDNA detected more grasses and forbs with less showy flowers, while the traditional method detected fewer grasses but also detected rarer forbs with large showy flowers. Additionally, we found the airborne eDNA metabarcoding survey required less sampling effort in terms of the time needed to conduct a survey and was able to detect more invasive species than the traditional method. Conclusions Overall, we have demonstrated that airborne eDNA can act as a sensitive and efficient plant community surveying method. Airborne eDNA surveillance has the potential to revolutionize the way plant communities are monitored in general, track changes in plant communities due to climate change and disturbances, and assist with the monitoring of invasive and endangered species.



2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Raul A. Chavarria ◽  
Mandy Game ◽  
Briana Arbelaez ◽  
Chloe Ramnarine ◽  
Zachary K. Snow ◽  
...  

Abstract Background Wnt genes code for ligands that activate signaling pathways during development in Metazoa. Through the canonical Wnt (cWnt) signaling pathway, these genes regulate important processes in bilaterian development, such as establishing the anteroposterior axis and posterior growth. In Arthropoda, Wnt ligands also regulate segment polarity, and outgrowth and patterning of developing appendages. Arthropods are part of a lineage called Panarthropoda that includes Onychophora and Tardigrada. Previous studies revealed potential roles of Wnt genes in regulating posterior growth, segment polarity, and growth and patterning of legs in Onychophora. Unlike most other panarthropods, tardigrades lack posterior growth, but retain segmentation and appendages. Here, we investigated Wnt genes in tardigrades to gain insight into potential roles that these genes play during development of the highly compact and miniaturized tardigrade body plan. Results We analyzed published genomes for two representatives of Tardigrada, Hypsibius exemplaris and Ramazzottius varieornatus. We identified single orthologs of Wnt4, Wnt5, Wnt9, Wnt11, and WntA, as well as two Wnt16 paralogs in both tardigrade genomes. We only found a Wnt2 ortholog in H. exemplaris. We could not identify orthologs of Wnt1, Wnt6, Wnt7, Wnt8, or Wnt10. We identified most other components of cWnt signaling in both tardigrade genomes. However, we were unable to identify an ortholog of arrow/Lrp5/6, a gene that codes for a Frizzled co-receptor of Wnt ligands. Additionally, we found that some other animals that have lost several Wnt genes and are secondarily miniaturized, like tardigrades, are also missing an ortholog of arrow/Lrp5/6. We analyzed the embryonic expression patterns of Wnt genes in H. exemplaris during developmental stages that span the establishment of the AP axis through segmentation and leg development. We detected expression of all Wnt genes in H. exemplaris besides one of the Wnt16 paralogs. During embryo elongation, expression of several Wnt genes was restricted to the posterior pole or a region between the anterior and posterior poles. Wnt genes were expressed in distinct patterns during segmentation and development of legs in H. exemplaris, rather than in broadly overlapping patterns. Conclusions Our results indicate that Wnt signaling has been highly modified in Tardigrada. While most components of cWnt signaling are conserved in tardigrades, we conclude that tardigrades have lost Wnt1, Wnt6, Wnt7, Wnt8, and Wnt10, along with arrow/Lrp5/6. Our expression data may indicate a conserved role of Wnt genes in specifying posterior identities during establishment of the AP axis. However, the loss of several Wnt genes and the distinct expression patterns of Wnt genes during segmentation and leg development may indicate that combinatorial interactions among Wnt genes are less important during tardigrade development compared to many other animals. Based on our results, and comparisons to previous studies, we speculate that the loss of several Wnt genes in Tardigrada may be related to a reduced number of cells and simplified development that accompanied miniaturization and anatomical simplification in this lineage.



2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dario Karmeinski ◽  
Karen Meusemann ◽  
Jessica A. Goodheart ◽  
Michael Schroedl ◽  
Alexander Martynov ◽  
...  

Abstract Background The soft-bodied cladobranch sea slugs represent roughly half of the biodiversity of marine nudibranch molluscs on the planet. Despite their global distribution from shallow waters to the deep sea, from tropical into polar seas, and their important role in marine ecosystems and for humans (as targets for drug discovery), the evolutionary history of cladobranch sea slugs is not yet fully understood. Results To enlarge the current knowledge on the phylogenetic relationships, we generated new transcriptome data for 19 species of cladobranch sea slugs and two additional outgroup taxa (Berthella plumula and Polycera quadrilineata). We complemented our taxon sampling with previously published transcriptome data, resulting in a final data set covering 56 species from all but one accepted cladobranch superfamilies. We assembled all transcriptomes using six different assemblers, selecting those assemblies that provided the largest amount of potentially phylogenetically informative sites. Quality-driven compilation of data sets resulted in four different supermatrices: two with full coverage of genes per species (446 and 335 single-copy protein-coding genes, respectively) and two with a less stringent coverage (667 genes with 98.9% partition coverage and 1767 genes with 86% partition coverage, respectively). We used these supermatrices to infer statistically robust maximum-likelihood trees. All analyses, irrespective of the data set, indicate maximal statistical support for all major splits and phylogenetic relationships at the family level. Besides the questionable position of Noumeaella rubrofasciata, rendering the Facelinidae as polyphyletic, the only notable discordance between the inferred trees is the position of Embletonia pulchra. Extensive testing using Four-cluster Likelihood Mapping, Approximately Unbiased tests, and Quartet Scores revealed that its position is not due to any informative phylogenetic signal, but caused by confounding signal. Conclusions Our data matrices and the inferred trees can serve as a solid foundation for future work on the taxonomy and evolutionary history of Cladobranchia. The placement of E. pulchra, however, proves challenging, even with large data sets and various optimization strategies. Moreover, quartet mapping results show that confounding signal present in the data is sufficient to explain the inferred position of E. pulchra, again leaving its phylogenetic position as an enigma.



2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Samantha Mynhardt ◽  
Lorraine Harris-Barnes ◽  
Paulette Bloomer ◽  
Nigel C. Bennett

Abstract Background Non-random associations within and among groups of social animals can provide valuable insight into the function of group living and the evolution of social behaviour. Damaraland mole-rats (Fukomys damarensis) demonstrate extremely high levels of reproductive skew, and dispersal is considered to be male-biased in onset and frequency, although asymmetry in dispersal distance is yet to be investigated. Dispersal may be positively correlated with increasing favourable environmental conditions, such as rainfall, however, the effects of ecological constraints on dispersal and colony fission–fusion dynamics have not previously been demonstrated on a spatial scale. Here we provide the first spatial population genetic study for this species. We investigated genetic structure in a population of Damaraland mole-rats from the southern Kalahari in South Africa over 3 years, combining observational dispersal data from mark-recapture with population genetic data to evaluate (1) sex-bias in frequency and distance of dispersal in this species, and (2) the effect of rainfall on fission–fusion dynamics of colonies. Results Our results demonstrate (1) that both males and females favour local dispersal but on rare occasions may disperse over distances greater than 400 m, (2) that males may disperse over greater distances than females, and (3) that males more frequently immigrate into established neighbouring colonies than females, who predominantly disperse by colony fission, i.e. multiple individuals “budding” from their native colony into a neighbouring territory, thereby establishing new colonies. Furthermore, our results demonstrate (4) elevated dispersal and colony fission in association with increased rainfall, supporting the hypothesis that rainfall may play a significant role in the maintenance and/or disruption of reproductive skew in Damaraland mole-rat populations. Conclusion This study represents the first fine-scale spatial population genetic study in Damaraland mole-rats, and provides relevant insights into colony fission–fusion dynamics in a social and cooperatively breeding species.



Sign in / Sign up

Export Citation Format

Share Document