Theoretical and experimental study of volumetric heat transfer coefficient for Direct-Contact Heat Exchanger: Theoretical and experimental study of volumetric heat transfer coefficient for Direct-Contact Heat Exchanger

Author(s):  
Junwei Huang ◽  
Shibo Wang ◽  
Jianhang Hu
2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Hameed B. Mahood ◽  
Adel O. Sharif ◽  
Seyed Ali Hosseini ◽  
Rex B. Thorpe

An analytical model for the temperature distribution of a spray column, three-phase direct contact heat exchanger is developed. So far there were only numerical models available for this process; however to understand the dynamic behaviour of these systems, characteristic models are required. In this work, using cell model configuration and irrotational potential flow approximation characteristic models has been developed for the relative velocity and the drag coefficient of the evaporation swarm of drops in an immiscible liquid, using a convective heat transfer coefficient of those drops included the drop interaction effect, which derived by authors already. Moreover, one-dimensional energy equation was formulated involving the direct contact heat transfer coefficient, the holdup ratio, the drop radius, the relative velocity, and the physical phases properties. In addition, time-dependent drops sizes were taken into account as a function of vaporization ratio inside the drops, while a constant holdup ratio along the column was assumed. Furthermore, the model correlated well against experimental data.


2010 ◽  
Vol 29-32 ◽  
pp. 132-137 ◽  
Author(s):  
Xue Jiang Lai ◽  
Rui Li ◽  
Yong Dai ◽  
Su Yi Huang

Flower baffle heat exchanger’s structure and design idea is introduced. Flower baffle heat exchanger has unique support structure. It can both enhance the efficiency of the heat transfer and reduce the pressure drop. Through the experimental study, under the same shell side flow, the heat transfer coefficient K which the distance between two flower baffles is 134mm is higher 3%~9% than the one of which the distances between two flower baffles are 163mm,123mm. The heat transfer coefficient K which the distance between two flower baffles is 147mm is close to the one of which the distances between two flower baffles is 134mm. The shell volume flow V is higher, the incremental quantity of heat transfer coefficient K is more. The integrated performance K/Δp of flower baffle heat exchanger which the distance between two flower baffles is 134mm is higher 3%~9% than the one of which the distances between two flower baffles are 163mm,123mm. Therefore, the best distance between two flower baffles exists between 134mm~147mm this experiment.


1980 ◽  
Vol 102 (1) ◽  
pp. 32-37 ◽  
Author(s):  
N. Kaji ◽  
Y. H. Mori ◽  
Y. Tochitani ◽  
K. Komotori

The characteristics of the augmentation technique previously proposed by the authors has been studied experimentally with water drops 3.9 to 5.9 mm in diameter rising in methylphenyl silicone oil. Each drop is subjected to an intermittent electric field applied periodically perpendicular to its trajectory, and the drop responds by periodic elongation in the direction of the field. The dependence of heat transfer coefficient on the strength, frequency and duty ratio of the field is presented and discussed.


Author(s):  
Qingtai Xiao ◽  
Wen Luo ◽  
Junwei Huang ◽  
Jianxin Xu ◽  
Hua Wang

By bringing two immiscible fluids at different temperatures into a direct contact heat exchanger (DCHE), bubble swarms are produced in the dual-loop ORC direct contact boiling heat transfer process. The aim of this paper is to make effort to explore the interplay between mixing state quality and heat transfer performance of fluids in the DCHE. Through flow visualization of this mixing process, a simple image analysis technique is introduced to represent the formation and evolution of vapor around the injected coolant droplets. Description of the boiling heat transfer process is here achieved by average volumetric heat transfer coefficient (VHTC). Experimental results attest that the proposed mixing index is powerful and sufficient compared with the Betti numbers method for the mixing quality quantification of bubbles inside DCHE. The synergistic association between the fluids mixing process and the heat transfer process is investigated by statistical regression model of new mixing index and VHTC. The contributions, including the data from monitoring practice in ORC heat transfer system and the proposed way, are presented to delve into the transient behaviors comparison of various fluids mixing and heat transfer processes conveniently.


Sign in / Sign up

Export Citation Format

Share Document