side flow
Recently Published Documents


TOTAL DOCUMENTS

249
(FIVE YEARS 49)

H-INDEX

19
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Monalisa Chatterjee ◽  
Sean Toh ◽  
Ahmed Alshmakhy ◽  
Yann Bigno ◽  
Paul Hewitt

Abstract Over the last few decades, tracers have provided crucial insights on fluid flow behavior assessing reservoir connectivity. For years, they had been viewed as mostly passive molecules that go with the flow of the injected fluid and uncover pathways between injectors and producers. The proposed paper sheds light on some interesting newer frontiers of tracer applications with unconventional uses to gain further flow insight from an oil and gas reservoir. Although primarily developed for interwell applications, newer and more sophisticated genres of tracers have found their way to assist with well fluid flow behavior. Inflow tracer applications, used for phase flow diagnostics, have been around for a few decades now. However, with several parameters like physical space restrictions, temperature, solid support selection, multi-phase flow, initial surge and target concentrations at play, it was soon realised that an extended lifetime was needed to provide techno-economic benefits during reservoir monitoring. Microencapsulation of tracer molecules is one of the newer developed techniques that has shown significant extension to tracer life in controlled release tracer applications as well as improved dispersibility within fracking fluid. Newer synthesis mechanisms like microencapsulation have been developed to linearize inflow tracer release profiles that has led to a substantial increase in tracer lifetime. As the research and development progressed, newer tracers such as frac bead tracers were developed allowing long term fluid flowback monitoring in fracture stimulated wells. In parallel, it is still an active field of investigation as to how tracers can be integrated with common downhole completion and topside equipment of a well to accurately detect early water breakthrough. The paper discusses the advances in these target areas where chemistry is constantly being upgraded to suit end user needs. Novel applications and ‘out-of-the-box’ uses have been developed in the last couple of years where inflow tracers have found a modified use within the gas lift system in a well and integrated with the top-side flow arm of the well, eradicating the need for individual sampling of wells and detection of water breakthrough at an early onset, thus aiding timely decision making and improved recovery from the well. Real time analysis of tracers have attracted attention for quite some time now. The paper also discusses the latest development in this area and the challenges associated with real field applications. While advancements in versatility of the tracer molecules have been published prior in literature, to the best of the authors’ knowledge, no work has been published to date that discusses the latest advances in unconventional uses of the tracer molecules aiding EOR and IOR processes.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Shiqian Ni ◽  
Yanqin Zhang ◽  
Zhen Quan

Purpose When the clearance oil film of hydrostatic bearing friction pair is in critical lubrication state, the phenomenon of zero flow of local lubricating oil will aggravate the oil film temperature rise, which needs to be solved. Design/methodology/approach In this paper, the critical lubrication parameter equation and the oil film temperature rise mathematical model are derived for the new type q1-205 double rectangular cavity hydrostatic bearing. Based on a combination of theoretical analysis, simulation and experimental verification, this paper analyzes the flow characteristics and temperature rise characteristics of the lubricating oil when the hydrostatic bearing is in a critical lubrication state under different operating conditions and finally obtains the critical lubrication state of the oil film. Findings This study found that the numerical simulations and the derived formulas agree with the results. When the oil film is in critical lubrication, the cross-section side flow of the oil side is almost zero. The heat cannot be taken away in time, resulting in the local temperature rise of the oil film, which causes serious heat accumulation. Originality/value It is concluded that the operating condition parameters corresponding to the critical lubrication state provide a theoretical basis for the selection of actual hydrostatic bearing operating conditions, which is of great scientific significance.


Author(s):  
Mohamed S. Abdelmoaty ◽  
Mahmoud Zayed

Abstract Background Local scour is one of the main problems affecting the stability and operation of control hydraulic structures. Many techniques were used to control the resulting scour. In the recent study, a new technique was used to control local scour downstream single-gate hydraulic regulator by using side flow jets. This study aimed to demonstrate the effect of side jets at different angles on the local scour parameters (depth, length, and volume) and energy dissipation in the downstream hydraulic regulator. Results A physical model was used to represent the open channel, regulator, and the side jets with different angles. Five flow discharges, four jet angles, and three gate openings were applied through the experiment. The experiment results showed that the presence of side jets had a remarkable effect on the parameters of the local scour hole and energy dissipation. They dissipated more energy of hydraulic jump than in the absence of jets, and consequently, scour hole dimensions were significantly reduced. Regression analysis was used to deduce equations that can predict the development of local scour downstream sluice gate considering the inclination angle of side flow jets under different flow conditions. Conclusions Side flow jets can be used as scour reducer techniques with the advantages of eliminating the jet clog produced from sediments and suspended solids.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022012
Author(s):  
Dazhou Yang ◽  
Mengjun Jiang

Abstract Four types of cooling plates with serpent channel structures are established to study the cooling effect of rectangular lithium-ion power battery under different cooling plates. Then, the number of serpent bends is analyzed, whether the fillet and pipe wall thickness is set on the cooling performance of the liquid cooling plate. According to the analysis results, a new liquid flow structure form of liquid cooling plate is designed. Numerical simulation results show that the newly designed cooling plate is integrated with the front flow of water and the internal liquid side flow, achieving a cooling effect with the maximum temperature is 309.55K and a pressure drop of 6032.1pa, which has the most effective cooling performance. Under the requirement of controlling reasonable temperature and low-pressure drop, a liquid cooling plate with better performance can be designed by innovatively setting the direction of the water inlet and outlet and the water channel’s internal flow. The above results will provide some ideas for the design of a lithium-ion battery liquid cooling plate.


2021 ◽  
Vol 39 (5) ◽  
pp. 1618-1626
Author(s):  
Sarawut Sirikasemsuk ◽  
Songkran Wiriyasart ◽  
Ruktai Prurapark ◽  
Nittaya Naphon ◽  
Paisarn Naphon

We investigated the results of the cooling performance of the pulsating water/nanofluids flowing in the thermoelectric cooling module for cooling electric vehicle battery systems. The experimental system was designed and constructed to consider the effects of the water block configuration, hot and cold side flow rates, supplied power input, and coolant types on the cooling performance of the thermoelectric module. The measured results from the present study with the Peltier module are verified against those without the thermoelectric module. Before entering the electric vehicle battering system with a Peltier module, the inlet coolant temperatures were 2.5-3.5℃ lower than those without the thermoelectric system. On the hot side, the maximum COP of the thermoelectric cooling module was 1.10 and 1.30 for water and nanofluids as coolant, respectively. The results obtained from the present approach can be used to optimize the battery cooling technique to operate in an appropriate temperature range for getting higher energy storage, durability, lifecycles, and efficiency.


Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2812
Author(s):  
Masoud Kazem ◽  
Hossein Afzalimehr ◽  
Jueyi Sui

By using model vegetation (e.g., synthetic bars), vortex structures in a channel with vegetation patches have been studied. It has been reported that vortex structures, including both the vertical and horizontal vortexes, may be produced in the wake in the channel bed with a finite-width vegetation patch. In the present experimental study, both velocity and TKE have been measured (via Acoustic Doppler Velocimeter—ADV) to study the formation of vortexes behind four vegetation patches in the channel bed. These vegetation patches have different dimensions, from the channel-bed fully covered patch to small-sized patches. Model vegetation used in this research is closely similar to vegetation in natural rivers with a gravel bed. The results show that, for a channel with a small patch (Lv/Dc = 0.44 and Dv/Dc = 0.33; where Lv and Dv are the length and width of patch and Dc is the channel width, respectively), both the flow passing through the patch and side flow around the patch have a considerable effect on the formation of flow structures beyond the patch. The results of further analysis via 3D classes of the bursting events show that the von Karman vortex street splits into two parts beyond the vegetation patch as the strong part near the surface and the weak part near the bed; while the middle part of the flow is completely occupied by the vertical vortex formed at a distance of 0.8–1 Hv beyond the vegetation patch, and thus, the horizontal vortexes cannot be detected in this region. The octant analysis is conducted for the coherent shear stress analysis that confirms the results of this experimental study.


Author(s):  
Benjamin Fietzke ◽  
Jan Mihalyovics ◽  
Rudibert King ◽  
Dieter Peitsch

Abstract Novel pressure gain combustion concepts invoke periodic flow disturbances in a gas turbine's last compressor stator row. This contribution presents studies of mitigation efforts on the effects of periodic disturbances on an annular compressor stator rig. The passages were equipped with pneumatic active flow control influencing the stator blade's suction side, and a rotating throttling disc downstream of the passages inducing periodic disturbances. For steady blowing, it is shown that with increasing actuation amplitudes $c_\mu$, a hub corner vortex's extension deteriorating the suction side flow can be reduced, resulting in an increased static pressure rise coefficient~$C_p$ of a passage. The effects of the induced periodic disturbances could not be addressed, by using steady blowing actuation. Considering a corrected total pressure loss coefficient $\zeta^*$, which includes the actuation effort, the stator row's efficiency decreases with higher $c_\mu$. Therefore, a closed-loop approach is presented to address the effects of the disturbances more specifically, thus lowering the actuation effort. For this, a Repetitive Model Predictive Control (RMPC) was applied, taking advantage of the disturbance's periodic nature. The presented RMPC formulation is restricted to a binary control domain to account for the used solenoid valves' switching character. An efficient implementation of the optimization within the RMPC is presented, which ensures real-time capability. As a result, $C_p$ increases in a similar magnitude but with a lower actuation mass flow of up to 66\,\%, resulting in a much lower~$\zeta^*$ for similar values of $c_\mu$.


2021 ◽  
Vol 19 (2) ◽  
pp. 335
Author(s):  
Kamil Leksycki ◽  
Eugene Feldshtein ◽  
Michał Ociepa

The article presents the results of the research on the plastic flow in the finish turning of 316L (X2CrNiMo17-12-2) stainless steel under dry cutting conditions. The steel was turned at variable cutting speeds and a constant depth of cut. The investigations were based on the Parameter Space Investigation method (PSI) which allowed minimizing the number of test points. It was observed that the phenomenon of slide flow occurred in the range of cutting speeds and feed rates under examination and its intensity depended on the values of these parameters. The phenomenon was more intense in the range of medium and higher cutting speeds and lower feed rates. The side flow results in significant changes between the real and theoretical values of roughness parameter Rz, which range from 40% up to even 330%.


Author(s):  
Wei Li ◽  
Desong Yang ◽  
Jingxiang Chen ◽  
Zhichuan Sun ◽  
Jiacheng Wang ◽  
...  

Abstract An experimental investigation of shell-side flow condensation was performed on advanced three-dimensional surface-enhanced tubes, including a herringbone micro-fin tube and a newly-developed 1-EHT tube. An equivalent plain tube was also tested for performance comparison. All the test tubes have similar geometry parameters (inner diameter 11.43mm, outer diameter 12.7mm). Tests were conducted using R410A as the working fluid at a condensation saturation temperature of 45·C, covering the mass flux range of 10-55 kg/(m2·s) with an inlet quality of 0.8 and an outlet quality of 0.1. Experimental results showed that the plain tube exhibits a better condensation heat transfer performance when compared to the enhanced tubes. Moreover, the mass flux has a significant influence on the best transfer coefficient for shell-side condensation. A new prediction model based on the Cavallini's equation was developed to predict the condensing coefficient where the mean absolute error is less than 4%.


Sign in / Sign up

Export Citation Format

Share Document