Detailed LDV Measurements for Visualization of the Flow Field Within a Stirred-Tank Reactor Equipped with a Rushton Turbine

1997 ◽  
Vol 75 (8) ◽  
pp. 729-736 ◽  
Author(s):  
M. Schäfer ◽  
M. Höfken ◽  
F. Durst
Author(s):  
Jürgen Fitschen ◽  
Alexandra Von Kameke ◽  
Sebastian Hofmann ◽  
Marko Hoffmann ◽  
Michael Schlüter

Stirred tank reactors are widely used in the chemical industry and bioprocess engineering and, consequently, a large number of scientific publications deal with the characterization of those apparatuses. However, there is very little information about the flow conditions. This is mostly due to the fact that these apparatuses are generally made of stainless steel, which restricts optical access. Furthermore, three-dimensional flow field measurements are still not trivial and involve costly equipment, therefore, investigations often reduce to two-dimensional PIV measurements. Nevertheless, recent works (Rosseburg et al., 2018; Taghavi and Moghaddas, 2020; Kuschel et al., 2021) impressively show the formation of compartments which hinder and delay mixing. However, these measurements are based either on instantaneous concentration profiles by means of pLIF measurements or on a two-dimensional projection of the system and thus do not allow conclusions about the development of the three dimensional compartments and the exchange rates between the compartments. In this work, for the first time, instantaneous flow field measurements with high spatial and temporal resolution are performed in the entire volume of a 3L stirred tank reactor based on 4D particle tracking velocimetry. The highly resolved particle trajectories further allow detailed Lagrangian analysis of the mixing dynamics inside the reactor, data that was previously inaccessible.


2007 ◽  
Vol 62 (22) ◽  
pp. 6143-6154 ◽  
Author(s):  
Debangshu Guha ◽  
P.A. Ramachandran ◽  
M.P. Dudukovic

Author(s):  
Marc Dhainaut ◽  
Pål Tetlie ◽  
Knut Bech

This study proposes a comparison between CFD (Computational Fluid Dynamics) and experimental results for a cylindrical stirred tank reactor. The stirred tank reactor considered here is 0.7 m high, 0.4 m in diameter, baffled and has four impeller blades on a single shaft, placed at the symmetry axis. The tank is filled with water and serves as a model for molten aluminium purifying reactors.The experimental part of the study compares the use of PIV and LDV techniques to determine the flow field inside the tank. We use PIV to get a complete picture of the flow field in two vertical sections of the tank (one radial and one eccentric). LDV is then used to check and compare the velocities obtained by PIV along horizontal lines belonging to the two vertical sections considered under the PIV-measurements. Good overall agreement between the two methods is obtained.The experimental results are compared to simulation of the tank using an alternative model that we have implemented in the commercial CFD software Fluent. The modeling approach we propose here avoids the classical sliding mesh technique and its tedious use (especially for pre- and post-processing). Our model does not physically represent the impeller blades. It rather introduces them as a time-dependent source term in the momentum equation. This term is only accounted for at the cells that would have been swept by a blade if the blades were present. The modeling of the tank and the set-up of the case are faster and easier. The computation of the flow field using this modeling approach is compared to the sliding mesh approach and to the experimental results discussed above. Results show good agreement between experimental data and both modeling approaches (sliding mesh technique and no impeller model). The model we propose does not bring more accuracy but more convenience in the modeling work.


Sign in / Sign up

Export Citation Format

Share Document