An Ecological Critique of the Sensory Conflict Theory of Motion Sickness

1991 ◽  
Vol 3 (3) ◽  
pp. 159-194 ◽  
Author(s):  
Thomas A. Stoffregen ◽  
Gary E. Riccio
Perception ◽  
2018 ◽  
Vol 47 (5) ◽  
pp. 521-530 ◽  
Author(s):  
Shaziela Ishak ◽  
Andrea Bubka ◽  
Frederick Bonato

Sensory conflict theories of motion sickness (MS) assert that symptoms may result when incoming sensory inputs (e.g., visual and vestibular) contradict each other. Logic suggests that attenuating input from one sense may reduce conflict and hence lessen MS symptoms. In the current study, it was hypothesized that attenuating visual input by blocking light entering the eye would reduce MS symptoms in a motion provocative environment. Participants sat inside an aircraft cockpit mounted onto a motion platform that simultaneously pitched, rolled, and heaved in two conditions. In the occluded condition, participants wore “blackout” goggles and closed their eyes to block light. In the control condition, participants opened their eyes and had full view of the cockpit’s interior. Participants completed separate Simulator Sickness Questionnaires before and after each condition. The posttreatment total Simulator Sickness Questionnaires and subscores for nausea, oculomotor, and disorientation in the control condition were significantly higher than those in the occluded condition. These results suggest that under some conditions attenuating visual input may delay the onset of MS or weaken the severity of symptoms. Eliminating visual input may reduce visual/nonvisual sensory conflict by weakening the influence of the visual channel, which is consistent with the sensory conflict theory of MS.


1990 ◽  
Vol 68 (2) ◽  
pp. 294-303 ◽  
Author(s):  
Charles M. Oman

"Motion sickness" is the general term describing a group of common nausea syndromes originally attributed to motion-induced cerebral ischemia, stimulation of abdominal organ afferents, or overstimulation of the vestibular organs of the inner ear. Seasickness, car sickness, and airsickness are commonly experienced examples. However, the identification of other variants such as spectacle sickness and flight simulator sickness in which the physical motion of the head and body is normal or even absent has led to a succession of "sensory conflict" theories that offer a more comprehensive etiologic perspective. Implicit in the conflict theory is the hypothesis that neural and (or) humoral signals originate in regions of the brain subserving spatial orientation, and that these signals somehow traverse to other centers mediating sickness symptoms. Unfortunately, our present understanding of the neurophysiological basis of motion sickness is incomplete. No sensory conflict neuron or process has yet been physiologically identified. This paper reviews the types of stimuli that cause sickness and synthesizes a mathematical statement of the sensory conflict hypothesis based on observer theory from control engineering. A revised mathematical model is presented that describes the dynamic coupling between the putative conflict signals and nausea magnitude estimates. Based on the model, what properties would a conflict neuron be expected to have?Key words: motion sickness, nausea, vestibular, vision, mathematical models.


2016 ◽  
Vol 116 (4) ◽  
pp. 1586-1591 ◽  
Author(s):  
Joanne Wang ◽  
Richard F. Lewis

Migraine is associated with enhanced motion sickness susceptibility and can cause episodic vertigo [vestibular migraine (VM)], but the mechanisms relating migraine to these vestibular symptoms remain uncertain. We tested the hypothesis that the central integration of rotational cues (from the semicircular canals) and gravitational cues (from the otolith organs) is abnormal in migraine patients. A postrotational tilt paradigm generated a conflict between canal cues (which indicate the head is rotating) and otolith cues (which indicate the head is tilted and stationary), and eye movements were measured to quantify two behaviors that are thought to minimize this conflict: suppression and reorientation of the central angular velocity signal, evidenced by attenuation (“dumping”) of the vestibuloocular reflex and shifting of the rotational axis of the vestibuloocular reflex toward the earth vertical. We found that normal and migraine subjects, but not VM patients, displayed an inverse correlation between the extent of dumping and the size of the axis shift such that the net “conflict resolution” mediated through these two mechanisms approached an optimal value and that the residual sensory conflict in VM patients (but not migraine or normal subjects) correlated with motion sickness susceptibility. Our findings suggest that the brain normally controls the dynamic and spatial characteristics of central vestibular signals to minimize intravestibular sensory conflict and that this process is disrupted in VM, which may be responsible for the enhance motion intolerance and episodic vertigo that characterize this disorder.


Author(s):  
Marco Recenti ◽  
Carlo Ricciardi ◽  
Romain Aubonnet ◽  
Ilaria Picone ◽  
Deborah Jacob ◽  
...  

Motion sickness (MS) and postural control (PC) conditions are common complaints among those who passively travel. Many theories explaining a probable cause for MS have been proposed but the most prominent is the sensory conflict theory, stating that a mismatch between vestibular and visual signals causes MS. Few measurements have been made to understand and quantify the interplay between muscle activation, brain activity, and heart behavior during this condition. We introduce here a novel multimetric system called BioVRSea based on virtual reality (VR), a mechanical platform and several biomedical sensors to study the physiology associated with MS and seasickness. This study reports the results from 28 individuals: the subjects stand on the platform wearing VR goggles, a 64-channel EEG dry-electrode cap, two EMG sensors on the gastrocnemius muscles, and a sensor on the chest that captures the heart rate (HR). The virtual environment shows a boat surrounded by waves whose frequency and amplitude are synchronized with the platform movement. Three measurement protocols are performed by each subject, after each of which they answer the Motion Sickness Susceptibility Questionnaire. Nineteen parameters are extracted from the biomedical sensors (5 from EEG, 12 from EMG and, 2 from HR) and 13 from the questionnaire. Eight binary indexes are computed to quantify the symptoms combining all of them in the Motion Sickness Index (IMS). These parameters create the MS database composed of 83 measurements. All indexes undergo univariate statistical analysis, with EMG parameters being most significant, in contrast to EEG parameters. Machine learning (ML) gives good results in the classification of the binary indexes, finding random forest to be the best algorithm (accuracy of 74.7 for IMS). The feature importance analysis showed that muscle parameters are the most relevant, and for EEG analysis, beta wave results were the most important. The present work serves as the first step in identifying the key physiological factors that differentiate those who suffer from MS from those who do not using the novel BioVRSea system. Coupled with ML, BioVRSea is of value in the evaluation of PC disruptions, which are among the most disturbing and costly health conditions affecting humans.


Displays ◽  
2020 ◽  
Vol 61 ◽  
pp. 101922 ◽  
Author(s):  
Adrian K.T. Ng ◽  
Leith K.Y. Chan ◽  
Henry Y.K. Lau

2008 ◽  
Vol 62 (2-3) ◽  
pp. 224-231 ◽  
Author(s):  
Paul Z. Elias ◽  
Thomas Jarchow ◽  
Laurence R. Young

1981 ◽  
Vol 50 (3) ◽  
pp. 469-477 ◽  
Author(s):  
A. Leger ◽  
K. E. Money ◽  
J. P. Landolt ◽  
B. S. Cheung ◽  
B. E. Rodden

Rotation at constant angular velocity about the head's Z-axis, with the rotational axis horizontal (barbecue-spit rotation), causes motion sickness and illusory perceptions of bodily movement. To determine whether such rotations about the head's X- and Y-axes cause similar effects, and to test the validity of the mismatch theory of motion sickness, more than 200 tests (using vertical axes as well as horizontal axes) were administered to 14 subjects. Three different visual conditions were also investigated: normal external vision, vision of only the inside walls of the rotating capsule, and eyes closed in the dark. In Earth-horizontal rotation, the X- and Y-axis stimuli were found to be equally as effective in provoking sickness as was the original Z-axis stimulus, and a comparable loss of perception of gravity occurred for all three stimuli. The horizontal axis stimuli were found to be very effective in producing sickness in all the three visual conditions, but the external vision condition was significantly less effective than the other two conditions. The findings were generally inconsistent with the mismatch theory.


Sign in / Sign up

Export Citation Format

Share Document