Vortex plume distribution in confined turbulent rotating convection

2013 ◽  
Vol 104 (5) ◽  
pp. 54002 ◽  
Author(s):  
Rudie P. J. Kunnen ◽  
Yoann Corre ◽  
Herman J. H. Clercx
2021 ◽  
Vol 33 (3) ◽  
pp. 034130
Author(s):  
Ankan Banerjee ◽  
Manojit Ghosh ◽  
Lekha Sharma ◽  
Pinaki Pal

2017 ◽  
Vol 828 ◽  
pp. 601-629 ◽  
Author(s):  
Jon E. Mound ◽  
Christopher J. Davies

Convection in the metallic cores of terrestrial planets is likely to be subjected to lateral variations in heat flux through the outer boundary imposed by creeping flow in the overlying silicate mantles. Boundary anomalies can significantly influence global diagnostics of core convection when the Rayleigh number, $Ra$, is weakly supercritical; however, little is known about the strongly supercritical regime appropriate for planets. We perform numerical simulations of rapidly rotating convection in a spherical shell geometry and impose two patterns of boundary heat flow heterogeneity: a hemispherical $Y_{1}^{1}$ spherical harmonic pattern; and one derived from seismic tomography of the Earth’s lower mantle. We consider Ekman numbers $10^{-4}\leqslant E\leqslant 10^{-6}$, flux-based Rayleigh numbers up to ${\sim}800$ times critical, and a Prandtl number of unity. The amplitude of the lateral variation in heat flux is characterised by $q_{L}^{\ast }=0$, 2.3, 5.0, the peak-to-peak amplitude of the outer boundary heat flux divided by its mean. We find that the Nusselt number, $Nu$, can be increased by up to ${\sim}25\,\%$ relative to the equivalent homogeneous case due to boundary-induced correlations between the radial velocity and temperature anomalies near the top of the shell. The $Nu$ enhancement tends to become greater as the amplitude and length scale of the boundary heterogeneity are increased and as the system becomes more supercritical. This $Ra$ dependence can steepen the $Nu\propto Ra^{\unicode[STIX]{x1D6FE}}$ scaling in the rotationally dominated regime, with $\unicode[STIX]{x1D6FE}$ for our most extreme case approximately 20 % greater than the equivalent homogeneous scaling. Therefore, it may be important to consider boundary heterogeneity when extrapolating numerical results to planetary conditions.


Author(s):  
M. Net ◽  
I. Mercader ◽  
E. Knobloch ◽  
H. F. Goldstein

AIP Advances ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 115324 ◽  
Author(s):  
Ayan Kumar Banerjee ◽  
Amitabh Bhattacharya ◽  
Sridhar Balasubramanian

2020 ◽  
Vol 61 (2) ◽  
pp. 023101
Author(s):  
B. Pachev ◽  
J. P. Whitehead ◽  
G. Fantuzzi ◽  
I. Grooms

Sign in / Sign up

Export Citation Format

Share Document